Abstract:As an important auxiliary material, adhesive materials have many important applications in various fields including but not limited to industrial packaging, marine engineering, and biomedicine. Naturally occurring adhesives such as mussel foot proteins are usually biocompatible and biodegradable, but their limited sources and poor mechanical properties in physiological conditions have limited their widespread uses in biomedical field. Inspired by the underwater adhesion phenomenon of natural organisms, a series of biomimetic adhesive materials have been developed through chemical or bioengineering approaches. Notably, some of those synthetic adhesives have exhibited great promise for medical applications in terms of their biocompatibility, biodegradability, strong tissue adhesion and many other attractive functional properties. As natural adhesive materials possess distinctive “living” attributes such as environmental responsiveness, self-regeneration and autonomous repairs, the development of various biologically inspired and biomimetic adhesive materials using natural adhesives as blueprints will thus be of keen and continuous interest in the future. The emerging field of synthetic biology will likely provide new opportunities to design living glues that recapitulate the dynamic features of those naturally occurring adhesives.