Abstract:As water-soluble, natural pigments, anthocyanins are responsible for the red, purple and blue colors of many flowers, which attract pollinators to spread pollen. The colors of flowers are also essential for plants to survive in the nature and become one of the most significant characteristics of ornamental plants. In the booming floriculture industry, to produce various flower colors could increase the richness of natural colors, but it is still difficult to breed flowers with coveted blue color. The diversity of flower color is mainly determined by the types and contents of anthocyanins and their derivatives. The synthesis of delphinidin pigments is the key factor for breeding blue flowers. However, there are no structural genes in many plants to biosynthesize delphinidin pigments. Blue flowers are successfully created by genetic engineering in recent years. In this paper, using common ornamental plants as examples, we review the mechanism of plant flower coloration from the aspects of the key factors affecting the synthesis of delphinidin pigment and the production strategies of blue flowers based on the regulation of anthocyanin metabolism. Different strategies of molecular breeding could provide opportunities to improve colors of other floriculture plants and to develop anthocyanin-rich economic crops, such as colored cotton with blue fibers.