Abstract:The enrichment of tyrosine phosphorylation sites plays an important role in the study of tyrosine phosphoproteomics and the commonly used enrichment methods are antibody affinity enrichment and SH2 superbinder enrichment. In addition, in order to achieve large-scale identification of tyrosine phosphorylation sites, biological mass spectrometry and bioinformatics have been applied in tyrosine phosphoproteomics. In-depth coverage research of tyrosine phosphoproteomics, revealing the dysregulated kinases in cancer process, may help us understanding the occurrence and development process of cancer. According to literature reports, three quarters of the oncogenes are tyrosine kinase genes. Therefore, tyrosine kinase inhibitors have received more and more attention as anticancer drugs. The application of tyrosine phosphoproteomics technology can identify tyrosine kinases related to cancer and other major diseases, so as to help finding tyrosine kinase inhibitors. In short, tyrosine phosphoproteomics technology can be applied in biomedical fields such as tyrosine kinase identification, tyrosine kinase inhibitor research, and tyrosine phosphorylation signal pathway research.