褐藻寡糖的制备方法及生物活性研究进展
作者:
基金项目:

中国农业大学2115人才工程


Advances in the preparation of alginate oligosaccharides and its biological functions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [88]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    褐藻胶是一类多糖聚合物,由于其独特的理化性质和有益健康的作用,已被广泛应用于制药和食品工业。然而,由于褐藻胶的水溶性低、黏度大,进而限制了褐藻胶的开发和应用。褐藻寡糖(alginate oligosaccharide, AOS) 是褐藻胶的降解产物,由于其分子量低、水溶性高、安全无毒等特点,近年来受到广泛关注。AOS独特的生物活性与其结构的多样性密切相关,可通过不同的制备方法获得具有特定结构和不同生物活性的AOS。文中对褐藻胶制备AOS的方法以及AOS的抗肿瘤、免疫调节功能、抗炎、抗氧化、益生元和抗糖尿病等生物活性进行了综述,并对AOS的结构与生物活性之间的关系进行了阐述,以期为AOS的深入研究与应用提供理论基础。

    Abstract:

    Alginate is a group of polyuronic saccharides that are widely used in pharmaceutical and food industry due to its unique physicochemical properties and beneficial health effects. However, the low water solubility and high viscosity of alginate hampered its application. Alginate oligosaccharide (AOS) is a decomposition product of alginate and has received increasing attention due to its low molecular weight, high water solubility, safety, and non-toxicity. The wide-ranging biological functions of AOS are closely related to its structural diversity. AOS with distinct structures and biological functions can be obtained by different methods of preparation. This review summarized the biological functions of AOS reported to date, including anti-tumor, immunomodulatory, anti-inflammatory, antioxidant, prebiotic, and anti-diabetes. The preparation of AOS, as well as the relationship between the structure and biological functions of AOS were discussed, with the aim to provide a reference for further development and application of AOS.

    参考文献
    [1] Draget KI and Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll, 2011, 25(2): 251-256.
    [2] Liu M, Liu L, Zhang H-F, et al. Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry. J Integ Agr, 2021, 20: 24-34.
    [3] Siddhesh NP and Kevin JE. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012, 33(11): 3279-3305.
    [4] Falkeborg M, Cheong LZ, Gianfico C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem, 2014, 164: 185-194.
    [5] Xu X, Wu X, Wang Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure–activity relationships. J Agric Food Chem, 2014, 62(14): 3168-3176.
    [6] Wang Y, Han F, Hu B, et al. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res, 2006, 26(11): 597-603.
    [7] Zhou R, Shi XY, Bi DC, et al. Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of β-amyloid. Mar Drugs, 2015, 13(9): 5828-5846.
    [8] Tusi SK, Khalaj L, Ashabi G, et al. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 2011, 32(23): 5438-5458.
    [9] Han Y, Zhang L, Yu X, et al. Alginate oligosaccharide attenuates α2, 6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway. Cell Death Dis, 2019, 10(5): 374.
    [10] Chi FC, Kulkarni SS, Zulueta MM, et al. Synthesis of alginate oligosaccharides containing L-guluronic acids. Chem Asian J, 2009, 4(3): 386-390.
    [11] Guo W, Feng J, Geng W, et al. Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydr Res, 2012, 352: 109-116.
    [12] Hu BY, Nie Y, Sun L, et al. Antioxidant evaluation of alginate oligosaccharides prepared by acid hydrolysis with different conditions. Sci Tech Food Ind, 2016, 37(10): 136-140.
    [13] Larsen B and Haug A. Chemical composition of the brown alga Ascophyllum nodosum (L.) Le Jol. : presence of reducing compounds in Ascophyllum nodosum. Nature, 1958, 181(4617): 1224-1224.
    [14] Shimokawa T, Yoshida S, Takeuchi T, et al. Preparation of two series of oligo-guluronic acids from sodium alginate by acid hydrolysis and enzymatic degradation. Biosci Biotech Biochem, 1996, 60(9): 1532-1534.
    [15] Chandı?a NP, Matsuhiro B, and Vásquez AE. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohyd Polym, 2001, 46: 81-87.
    [16] Zhang HR, Wang CY, Liu B, et al. A method for preparation of saturated oligosaccharides from alginate. Chin J Mar Drugs, 2006(3): 1-6 (in Chinese). 张洪荣, 王长云, 刘斌, 等. 一种饱和褐藻胶寡糖的制备方法. 中国海洋药物, 2006, 25(03): 1-6.
    [17] Mao S, Zhang T, Sun W, et al. The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol, 2012, 17(6): 763-769.
    [18] Yang Z, Li J-P, and Guan H-S. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydr Polym, 2004, 58(2): 115-121.
    [19] El-Mohdy HLA. Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arab J Chem, 2017, 10: S431-S438.
    [20] Zhu B, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Crit Rev Food Sci Nutr, 2020: 1-15.
    [21] Liu J, Yang S, Li X, et al. Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci F, 2019, 18(6): 1859-1881.
    [22] Mrudulakumari Vasudevan U, Lee OK, and Lee EY. Alginate derived functional oligosaccharides: recent developments, barriers, and future outlooks. Carbohyd Polym, 2021, 267: 1-18.
    [23] Aida TM, Yamagata T, Watanabe M, et al. Depolymerization of sodium alginate under hydrothermal conditions. Carbohyd Polym, 2010, 80(1): 296-302.
    [24] Liu HC, Zhang J, Wang GM. Advances in degradation methods of alginate and bioactivity of its degradation products. Sci Technol Food Ind, 2020, 41(13): 350-357, 363 (in Chinese). 刘海超, 张健, 王共明, 等. 褐藻胶的降解方法及其产物生物活性研究进展. 食品工业科技, 2020, 41(13): 350-357, 363.
    [25] Ertesvåg H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol, 2015, 6: 523.
    [26] Yamasaki M, Moriwaki S, Miyake O, et al. Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a beta-sandwich fold. J Biol Chem, 2004, 279(30): 31863-31872.
    [27] Moen E, Horn S, and Østgaard K. Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes. J Appl Phycol, 1997, 9(2): 157-166.
    [28] Li M, Shang Q, Li G, et al. Degradation of marine algae-derived carbohydrates by bacteroidetes isolated from human gut microbiota. Mar Drugs, 2017, 15(4): 92.
    [29] Tang JC, Taniguchi H, Chu H, et al. Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Lett Appl Microbiol, 2009, 48(1): 38-43.
    [30] Yang JH, Bang MA, Jang CH, et al. Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression. J Nutr Biochem, 2015, 26(11): 1393-1400.
    [31] Wang M, Chen L, Liu Z, et al. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer. Microbiologyopen, 2016, 5(6): 1038-1049.
    [32] An QD, Zhang GL, Wu HT, et al. Properties of an alginate-degrading Flavobacterium sp. strain LXA isolated from rotting algae from coastal China. Can J Microbiol, 2008, 54(4): 314-320.
    [33] Choi D, Piao YL, Shin WS, et al. Production of oligosaccharide from alginate using Pseudoalteromonas agarovorans. Appl Biochem Biotechnol, 2009, 159(2): 438-452.
    [34] He X, Hwang HM, Aker WG, et al. Synergistic combination of marine oligosaccharides and azithromycin against Pseudomonas aeruginosa. Microbiol Res, 2014, 169(9-10): 759-767.
    [35] Guo JJ, Ma LL, Shi HT, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Mar Drugs, 2016, 14: 231.
    [36] Liu H, Zhang YH, Yin H, et al. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem, 2013, 62: 33-40.
    [37] Tang J, Zhou Q, Chu H, et al. Characterization of alginase and elicitor-active oligosaccharides from Gracilibacillus A7 in alleviating salt stress for Brassica campestris L. J Agric Food Chem, 2011, 59(14): 7896-7901.
    [38] Hu XK, Jiang XL, Hwang HM, et al. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. Eur J Phycol, 2004, 39: 67-71.
    [39] Zhu YB, Wu LY, Chen YH, et al. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol Res, 2016, 182: 49-58.
    [40] Zhu B, Chen M, Yin H, et al. Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase. Mar Drugs, 2016, 14(6): 2-11.
    [41] Li L, Jiang X, Guan H, et al. Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res, 2011, 346(6): 794-800.
    [42] Yamasaki Y, Yokose T, Nishikawa T, et al. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii. J Biosci Bioeng, 2012, 113(1): 112-116.
    [43] Chaki T, Kajimoto N, Ogawa H, et al. Metabolism and calcium antagonism of sodium alginate oligosaccharides. Biosci Biotechnol Biochem, 2007, 71(8): 1819-1825.
    [44] Maitena U, Katayama S, Sato R, et al. Improved solubility and stability of carp myosin by conjugation with alginate oligosaccharide. Fisheries Sci, 2004, 70: 896-902.
    [45] Chen Y, Dou W, Li H, et al. The alginate lyase from Isoptericola halotolerans CGMCC 5336 as a new tool for the production of alginate oligosaccharides with guluronic acid as reducing end. Carbohydr Res, 2018, 470: 36-41.
    [46] Huang G, Wang Q, Lu M, et al. AlgM4: a new salt-activated alginate lyase of the PL7 family with endolytic activity. Mar Drugs, 2018, 16(4): 120.
    [47] Zhu B, Hu F, Yuan H, et al. Biochemical characterization and degradation pattern of a unique pH-stable PolyM-specific alginate lyase from newly isolated Serratia Marcescens NJ-07. Mar Drugs, 2018, 16(4): 129.
    [48] Zhu B, Sun Y, Ni F, et al. Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int J Biol Macromol, 2018, 108: 1140-1147.
    [49] Pei X, Chang Y, and Shen J. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif, 2019, 154: 44-51.
    [50] Zhu B, Ni F, Sun Y, et al. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. Biotechnol Biofuels, 2019, 12: 13.
    [51] Chen P, Zhu Y, Men Y, et al. Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs, 2018, 16(3): 86.
    [52] Yan J, Chen P, Zeng Y, et al. The characterization and modification of a novel bifunctional and robust alginate lyase derived from Marinimicrobium sp. H1. Mar Drugs, 2019, 17(10): 545.
    [53] Fischer A and Wefers D. Chromatographic analysis of alginate degradation by five recombinant alginate lyases from Cellulophaga algicola DSM 14237. Food Chem, 2019, 299: 1-8.
    [54] Iwamoto Y, Xu X, Tamura T, et al. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci Biotechnol Biochem, 2003, 67(2): 258-263.
    [55] Gombotz WR and Wee SF. Protein release from alginate matrices. Adv Drug Deliver Rev, 2012, 64: 194-205.
    [56] Chen JY, Hu Y, Zhang LR, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Front Pharmacol, 2017, 8: 623.
    [57] Takahashi K, Watanuki Y, Yamazaki M, et al. Local induction of a cytotoxic factor in a murine tumour by systemic administration of an antitumour polysaccharide, MGA. Brit J Cancer, 1988, 57(2): 170-173.
    [58] Fang WS. Study of the regulatory effects of alginate oligosaccharide on regulation of signal transduction inmacrophages[D]. Shenzhen: Shenzhen University, 2016 (in Chinese). 方伟珊. 褐藻胶寡糖对巨噬细胞信号转导的调节作用研究[D]. 深圳: 深圳大学, 2016.
    [59] Wan J, Jiang F, Xu Q, et al. Alginic acid oligosaccharide accelerates weaned pig growth through regulating antioxidant capacity, immunity and intestinal development. RSC Adv, 2016, 6(90): 87026-87035.
    [60] Kurachi M, Nakashima T, Miyajima C, et al. Comparison of the activities of various alginates to induce TNF-alpha secretion in RAW264.7 cells. J Infect Chemother, 2005, 11(4): 199-203.
    [61] Iwamoto M, Kurachi M, Nakashima T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett, 2005, 579(20): 4423-4429.
    [62] Yamamoto Y, Kurachi M, Yamaguchi K, et al. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides. Biosci Biotechnol Biochem, 2007, 71(1): 238-241.
    [63] Yamamoto Y, Kurachi M, Yamaguchi K, et al. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydr Res, 2007, 342(8): 1133-1137.
    [64] Ueno M, Cho K, Nakazono S, et al. Alginate oligomer induces nitric oxide (NO) production in RAW264.7 cells: elucidation of the underlying intracellular signaling mechanism. Biosci Biotechnol Biochem, 2015, 79(11): 1787-1793.
    [65] Xu X, Bi DC, Wu XT, et al. Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages. FASEB J, 2014, 28(6): 2645-2654.
    [66] Xu X, Cheng D, Chao B, et al. Morphological and proteomic analyses reveal that unsaturated guluronate oligosaccharide modulates multiple functional pathways in murine macrophage RAW264.7 cells. Mar Drugs, 2015, 13(4): 1798-1818
    [67] Wang P, Jiang X, Jiang Y, et al. In vitro antioxidative activities of three marine oligosaccharides. Nat Prod Res, 2007, 21(7): 646-654.
    [68] Ueno M, Hiroki T, Takeshita S, et al. Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohyd Res, 2012, 352: 88-93.
    [69] Zhao X, Li B, Xue C, et al. Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. J Appl Phycol, 2012, 24(2): 295-300.
    [70] Hernandez-Marin E and Martínez A. Carbohydrates and their free radical scavenging capability: a theoretical study. J Phys Chem B, 2012, 116(32): 9668-9675.
    [71] Li S, He N, and Wang L. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice. Mar Drugs, 2019, 17(9): 540.
    [72] Wan J, Zhang J, Chen D, et al. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv, 2018, 8(24): 13482-13492.
    [73] Zhu W, Li D, Wang J, et al. Effects of polymannuronate on performance, antioxidant capacity, immune status, cecal microflora, and volatile fatty acids in broiler chickens. Poult Sci, 2015, 94(3): 345-352.
    [74] Saigusa M, Nishizawa M, Shimizu Y, et al. In vitro and in vivo anti-inflammatory activity of digested peptides derived from salmon myofibrillar protein conjugated with a small quantity of alginate oligosaccharide. Biosci Biotechnol Biochem, 2015, 79(9): 1518-1527.
    [75] Zhou R, Shi XY, Gao Y, et al. Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide- xactivated murine macrophage RAW 264.7 cells. J Agric Food Chem, 2015, 63(1): 160-168.
    [76] Zhao Y, Feng Y, Liu M, et al. Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis. Mucosal Immunology, 2020, 13(3): 437-448.
    [77] Xing M, Cao Q, Wang Y, et al. Advances in research on the bioactivity of alginate oligosaccharides. Mar Drugs 2020, 18(3): 144.
    [78] Aletaha S, Haddad L, Roozbehkia M, et al. M2000 (β-D-mannuronic acid) as a novel antagonist for blocking the TLR2 and TLR4 downstream signalling pathway. Scand J Immunol, 2017, 85(2): 122-129.
    [79] Hajivalili M, Pourgholi F, Majidi J, et al. G2013 modulates TLR4 signaling pathway in IRAK-1 and TARF-6 dependent and miR-146a independent manner. Cell Mol Biol, 2016, 62(4): 1-5.
    [80] Mortazavi-Jahromi SS, Farazmand A, Motamed N, et al. Effects of guluronic acid (G2013) on SHIP1, SOCS1 induction and related molecules in TLR4 signaling pathway. Int Immunopharmacol, 2018, 55: 323-329.
    [81] Miao L, Zhang XN, Ma LJ, et al. Effects of alginate derived oligosaccharide on the growth of Bifidobacterium in vitro. Food Res Deve, 2008(11): 16-19 (in Chinese). 李淼, 张晓楠, 马莲菊, 等. 褐藻胶寡糖对双歧杆菌体外生长影响的研究. 食品研究与开发, 2008(11): 16-19.
    [82] Powell LC, Pritchard MF, Emanuel C, et al. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol, 2014, 50(3): 483-492.
    [83] Dou Y and H PH. Preparation of alginate oligosaccharide and studies on antimicrobial activity. Guangdong Agricul Sci, 2009(12): 161-163, 179.
    [84] Han Z-L, Yang M, Fu X-D, et al. Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar Drugs, 2019, 17(3): 173.
    [85] Yan GL, Guo YM, Yuan JM, et al. Sodium alginate oligosaccharides from brown algae inhibit Salmonella enteritidis colonization in broiler chickens. Poultry Sci, 2011, 90(7): 1441-1448.
    [86] Wang X, Liu F, Gao Y, et al. Transcriptome analysis revealed anti-obesity effects of the sodium alginate in high-fat diet -induced obese mice. Int J Biol Macromol, 2018, 115: 861-870.
    [87] Yang CF, Lai SS, Chen YH, et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem Toxicol, 2019, 131: 110562.
    [88] Aarstad OA, Tøndervik A, Sletta H, et al. Alginate sequencing: an analysis of block sistribution in alginates using specific alginate degrading enzymes. Biomacromolecules, 2012, 13(1): 106-116.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

阿拉腾珠拉,胡永飞. 褐藻寡糖的制备方法及生物活性研究进展[J]. 生物工程学报, 2022, 38(1): 104-118

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-21
  • 在线发布日期: 2022-01-25
文章二维码
您是第6155644位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司