丛枝菌根真菌通过改变植物基因表达水平和微生物群落结构促进红叶石楠对镉的吸收
作者:
基金项目:

浙江省自然科学基金(LQ16D010007, Y19D010037);国家自然科学基金(41907113)


Arbuscular mycorrhizal fungi enhanced cadmium uptake in Photinia frase through altering root transcriptomes and root-associated microbial communities
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    作为一种非必需元素,重金属镉(cadmium, Cd) 的污染对植物、环境乃至人类健康具有严重影响。利用绿化苗木移栽修复Cd污染土壤具有广阔的应用前景。为了明确丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)对红叶石楠(Photinifraseri frase) Cd吸收的促进作用,本研究利用盆栽试验比较了接种扭形伞房球囊霉(Sieverdingia tortuosa) 和摩西斗管囊霉(Funneliformis mosseae) 后红叶石楠的生长和Cd吸收差异,并利用转录组和微生物组测序技术分析了接种对红叶石楠根系基因表达水平和根围微生物群落结构的影响。结果表明,接种摩西斗管囊霉后,红叶石楠根、茎、叶中Cd浓度相比对照分别增加了57.2%、44.1%和71.1%,全株Cd含量达到182 μg/株。东京基因与基金组百科全书(Kyoto encyclopedia of genes and genomes, KEGG) 代谢通路分析结果表明,接种摩西斗管囊霉影响了植物蛋白激酶(mitogen-activated protein kinase, MAPK) 信号通路、植物激素信号转导、糖酵解/糖异生和次生代谢产物的生物合成等相关基因的表达。微生物群落结构分析表明,接种扭形伞房球囊霉增加了酸杆菌门(Acidobacteria) 的相对丰度,而接种摩西斗管囊霉则增加了土壤中绿弯菌门(Chloroflexi) 和髌骨细菌门(Patescibacteria) 的相对丰度。接种AMF后球囊霉目(Glomerales) 丰度显著增加,由对照的23%上升至70%以上。相关性分析结果显示,乙烯反应转录因子、α-氨基己二酸半醛合酶、异淀粉酶和胍丁胺脱氨酶等基因表达与球囊霉目丰度显著负相关,半胱氨酸氧化、热休克蛋白、肉桂酰辅酶A还原酶和脱落酸受体等相关基因表达与髌骨细菌门丰度呈显著正相关。结果表明,摩西斗管囊霉的接种不仅直接影响了红叶石楠的基因表达水平,促进了红叶石楠对Cd的吸收,而且通过改变红叶石楠根围细菌群落结构,进一步提高了红叶石楠在Cd胁迫条件下的适应性。研究结果为进一步认识植物根系转录组和根围微生物组的相互关系提供了理论依据,并为Cd污染土壤修复提供了一种新的策略。

    Abstract:

    As a non-essential metal, cadmium (Cd) pollution poses severe threats to plant growth, environment, and human health. Phytoextraction using nursery stocks prior to their transplantation is a potential useful approach for bioremediation of Cd contaminated soil. A greenhouse pot experiment was performed to investigate the growth, Cd accumulation, profiles of transcriptome as well as root-associated microbiomes of Photinia frase in Cd-added soil, upon inoculation of two types of arbuscular mycorrhizal fungi (AMF) Sieverdingia tortuosa and Funneliformis mosseae. Compared with the control, inoculation of F. mosseae increased Cd concentrations in root, stem and leaf by 57.2%, 44.1% and 71.1%, respectively, contributing to a total Cd content of 182 μg/plant. KEGG pathway analysis revealed that hundreds of genes involved in 'Mitogen-activated protein kinase (MAPK) signaling pathway', 'plant hormone signal transduction', 'biosynthesis of secondary metabolites' and 'glycolysis/gluconeogenesis' were enriched upon inoculation of F. mosseae. The relative abundance of Acidobacteria was increased upon inoculation of S. tortuosa, while Chloroflexi and Patescibacteria were increased upon inoculation of F. mosseae, and the abundance of Glomerales increased from 23.0% to above 70%. Correlation analysis indicated that ethylene-responsive transcription factor, alpha-aminoadipic semialdehyde synthase, isoamylase and agmatine deiminase related genes were negatively associated with the relative abundance of Glomerales operational taxonomic units (OTUs) upon inoculation of F. mosseae. In addition, plant cysteine oxidase, heat shock protein, cinnamoyl-CoA reductase and abscisic acid receptor related genes were positively associated with the relative abundance of Patescibacteria OTUs upon inoculation of F. mosseae. These finding suggested that AMF can enhance P. frase Cd uptake by modulating plant gene expression and altering the structure of the soil microbial community. This study provides a theoretical basis for better understanding the relationship between root-associated microbiomes and root transcriptomes of P. frase, from which a cost-effective and environment-friendly strategy for phytoextraction of Cd in Cd-polluted soil might be developed.

    参考文献
    [1] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater, 2014, 266: 141-166.
    [2] Rezapour S, Kouhinezhad P, Samadi A. The potential ecological risk of soil trace metals following over five decades of agronomical practices in a semi-arid environment. Chem Ecol, 2018, 34(1): 70-85.
    [3] Mori J, Sæbø A, Hanslin HM, et al. Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban For Urban Green, 2015, 14(2): 264-273.
    [4] Fu GY, Qiu YQ, Song BY, et al. Heavy metals enrichment characteristics of the dominant plants in lead-zinc slag yard along Dongjiang lake reservoir. J Central South Univ For Technol, 2019, 39(4): 117-122 (in Chinese). 付广义, 邱亚群, 宋博宇, 等. 东江湖铅锌矿渣堆场优势植物重金属富集特征. 中南林业科技大学学报, 2019, 39(4): 117-122.
    [5] Guo B, Liang YC, Fu QL, et al. Cadmium stabilization with nursery stocks through transplantation: a new approach to phytoremediation. J Hazard Mater, 2012, 199/200: 233-239.
    [6] Luo J, Cai LM, Qi SH, et al. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment. Chemosphere, 2018, 193: 244-250.
    [7] Basu S, Rabara RC, Negi S. AMF: The future prospect for sustainable agriculture. Physiol Mol Plant Pathol, 2018, 102: 36-45.
    [8] de Oliveira VH, Ullah I, Dunwell JM, et al. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ Exp Bot, 2020, 171: 103925.
    [9] Zhang XF, Hu ZH, Yan TX, et al. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol Environ Saf, 2019, 171: 352-360.
    [10] Abdelhameed RE, Metwally RA. Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremediation, 2019, 21(7): 663-671.
    [11] Huang XC, Ho SH, Zhu SS, et al. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manag, 2017, 197: 448-455.
    [12] Gu LJ, Zhao ML, Ge M, et al. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf, 2019, 186: 109744.
    [13] Chen XW, Wu L, Luo N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 2019, 337: 749-757.
    [14] Hu JL, Wu SC, Wu FY, et al. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L. ) in a Cd-contaminated acidic soil. Chemosphere, 2013, 93(7): 1359-1365.
    [15] Liu H, Yuan M, Tan SY, et al. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol, 2015, 89: 44-49.
    [16] Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, et al. Arbuscular mycorrhizal fungi and rhizobacteria promote growth of Russian knapweed (Acroptilon repens L. ) in a Cd-contaminated soil. J Plant Growth Regul, 2019, 38(1): 113-121.
    [17] Zhang FG, Liu MH, Li Y, et al. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ, 2019, 655: 1150-1158.
    [18] Li JJ, Zeng M. Ecological significance of arbuscular mycorrhiza on plant rhizosphere stress. Chin J Appl Ecol, 2020, 31(9): 3216-3226 (in Chinese). 李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义. 应用生态学报, 2020, 31(9): 3216-3226.
    [19] Teng QM, Zhang ZF, Li HY, et al. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis characteristics and mineral nutrition of Arundo donax under Cd stress. Soils, 2020, 52(6): 1212-1221 (in Chinese). 滕秋梅, 张中峰, 李红艳, 等. 丛枝菌根真菌对镉胁迫下芦竹生长、光合特性和矿质营养的影响. 土壤, 2020, 52(6): 1212-1221.
    [20] Chen BD, Nayuki K, Kuga Y, et al. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes Environ, 2018, 33(3): 257-263.
    [21] Riaz M, Kamran M, Fang Y, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal?楰???潯楴摯穸???湴癹椠物潮渠??硴灡??潣瑯???ね?????????????ㄠ????扩牴??孡?㈠嵲??畩灥瑷愮?????偺敡湲慤?????割漬洠攲爰漲?倬甠攴爰琲愺猠?????改琮?慢汲? ̄乛??偝??潩硡楮摧愠獑教猬?摚楨晵景攠牆攬渠瑌楯慮汧氠祓?爬攠来畴氠慡瑬攮?剃佡卮?浡敲瑢慵扳潣汵楬獡浲?慭湹摣?湲畲瑨物楺敡湬琠?畵灮瑧慩欠敲?畤湵摣敥爠?捤愠摵浰楴畡浫?琠潡确楤挠楡瑬祬??偩污慴湥琠??攠汴汯??湣癩楴特漠湯??监ど?????っ??????ば???????扩爾??孲??嵮?奩慮渠?????畤??儠??剩楬慳稿????攠瑒?慰氬?′?漱父漬渠?洺椠琲椱朸愰琵攮猼??椯?捛椲琳牝甠獓??楧??牓漬漠瑐?楲湩橨畡牲椠敐猬?打祩?牧敨朠畒氬愠瑥楴渠条?椮渠瑈牥慡捶敹氠汭略汴慡牬?灴??慥湲摡?牣敥愠捩瑮椠癰敬?潮硴祳机攠湲?獬灥攠捯楦攠獴?瑡潮?牣敲獩楰獴瑯???獳甬瀠????獥畯灭??瑳漬砠業捥楴瑡祢???湭癩楣牳漬渠?偮潤氠汩畯瑮???っ?????????????????扩爬??嬰??崬?夶愺渠?失头??夼慢湲术 ̄????愠湌?塩夠??攬琠?慵汮???愠摓浵楮甠浙?愠捥捴甠浡畬氮愠瑊楡潳湭?据慩灣愠捡楣瑩祤?慡湬摬?牶敩獡楴獥瑳愠湣捡敤?獩瑵牭愠瑴敯杸楩散獩?潹映?慮?挼慩搾流楲畡浢?桤祯灰敳物瑳漼氯敩爾愠湶瑩?映敳牵湰??楥??楩捯牮漠獯潦爠畣浡?晭潩牵瑭甠湵数楴??楥???卤挠楴?呡潮瑳慬汯??湴癩楯牮漮渠???の??????????㈠あ???水㈠???戰爬??嬲??崩?丠甲挱挸椭漲′?????漯搾杛攲‵???偩敡瑮琠?剐椬搠杗敡????攬琠?慩汵???測?慥牴戠畡獬挮甠汔慲牡?浳祣捲潩牰牴桩楯穮慡汬?晲略湧杵畬獡?獩楯杮渠楡普楤挠慥湸瑰汲祥?浳潩摯楮映楮敥獴?瑯桲敫?獲潥楳汰?扮慤捩瑮敧爠楴慯氠?捡潤浭浩畵湭椠瑳祴?慥湳摳?湩楮琠牡漠权敤渭?捯祬捥汲楡湮杴?摰略牲楥湮杮?污楬琠瑧敲牡?摳攠挼潩派灐潯獡椠瑐楲潡湴???湩癳椼爯潩渾??楃捨牥潭扯楳潰汨????ㄠ??′???????ㄠ??????????戯爾??嬶??嵎??潢畡?????圠慍湥杴?????楣甠?呡??敮瑣?愠污??唠湩楴煳甠敯?牴档楯穭潥猺瀠桤敥牦敩?浩楥据牣潹?捯桦愠牶慩捴瑡敭物楮猠瑂椹挠獡?晤愠捳極汣楲瑯慳瑥攠?灵桰祰瑬潹攠硥瑣牴慯捰瑩楣潡湬?潹映?浮畤汵瑣楥灳氠敳?浡敲瑣慨氠獳?楮湴?獥潳楩汳?扩祮?瑥桴敩?桰祬灡敳牴慳挮挠畐浬畡汮慴琠楃湥杬?瀠汐慨湹瑳??楬?匠攲搰由洷?愠氵昸爨攸搩椺椠??椸????游瘵椮爼潢湲?匾捛椲?呝攠捚桨湵漠汈??㈠ぁ?????ㄠ??は??????????????扡牮??孲??嵴??敥氠污?呡????汳漠異瑲楯敶物??畮牧琠敮慯當?????汳?佧瑨慴楳戠楦????敤琭?慥汳???慡牮汴礠?牡桬楬稠潦獥灳档敵牥攠?浥楳捰牯潮扳楥潳洠整?挠潃浤瀠潳獴楲瑥楳潳渮?楅獣?牴敯汸慩瑣敯摬?瑅潮?瑩桲敯?朠牓潡睦琬栠′愰渱搸?娠渱?田瀺琠愳欴改?漳昵?眮椼汢汲漯眾獛′椸湝琠牋潨摡畮挠敁搬?瑂潩?慡?映潓爬洠敋牨?汮愠湁摌昬椠汥汴???渮瘠楓物潬湩??楮挭牭潥扤楩潡汴??㈠ち????????????て㈠???ぢ????戠牳??孩??嵴?圠慡湮杤????婭潩畵?删???楥?女???攠瑤?慴汥???晬晭攠挨琼?漾晐?坯桥敮慩瑸??楡?却潹汬慩湦略浲?渼椯杩爾甠浌??椩?????楥湧瑵敬牡捴物潮灧瀠楰湨杹?潩湯??摯?慭捯据畡浬甠污慬瑴楥潲湡?扩祯?瀮氠慅湣瑯獴?慸湩摣?獬漠楅汮?扩慲捯瑮攠牓楡慦氬?挲漰洲洰甬渠椱琸礸?甠渱搰改爸??搮?换潲港琾慛洲椹湝愠瑎敯摵?猭潅楬汤???捈潈琬漠硁楮捤潥汲??湮瘠楔片漬渠?卵慲景????㈠づ???ぬ???????????扲牡??孰??嵴??湳?????坥敳楳??婴??坬愠湦杯??奴??敮瑳?慯汣???景普攠捯瑦猠?潬晵?灯潳汩祮浯敬牡?浥漠摤楥晦楥敮牣獥?潣湯?瑰桯敵?扤慳挠瑴敯爠楳慥汥?捳漮洠济畡湴極瑲楥攬猠′椰渱′挬愠搴洸椸用洷?挱漲温琺愠洵椳渱愭琵攳搴?愼汢歲愯氾楛渳攰?猠潒楡汯???瀠灓汵?匠潊椬氠??据潧氠??㈠づ?ㄠ????????は??????扮牳??孩?ぴ嵯?婥栠潡畮????婡慬湬朠??????潡敬灹灳浩慳渠湯?匠??敯琠?慨汩???牥戠畷獩捬畬汯慷爠?浵祬捴潩牶牡桲楳稠慲?敶湥桡慬湳挠敳獴?牥桳楳稠潲摥敳灰潯獮楳瑥椠潧湥?慥湳搠?牮攠搼畩挾敓獡?瑩桸攠?牡桴楳穵潤獡灮桡攼爯敩 ̄瀮爠楐浌楯湓朠?敮晥昬攠挲琰?漴測?琹栨攱‰搩攺挠潥洱瀰漹猱椲琲椮漼湢?漯显?猳漱楝氠?潯牵朠慊湈椬挠?浡慮瑧琠敇爬??卩漠楊氬??楴漠污??椠潔捲桡敮浳???ば?ど????????べ??????扩牣??嬠??嵤?奣慹湴杯?奯剧??卡潬渠条?奡奬??卩捳栠敶污汬敩牤??噥??整瑨?愠汲???潳洠浯畦渠楳瑯祭?猠瑫牥畹挠瑧略牮敥?漠晬?慮牫扥畤猠捃畤氠慳牴?浥祳捳漠物牮栠椼穩愾汓?晬畩湸朠業?慴獳獵潤捡楮慡琼攀搀?眀椀琀栀??椀?刀漀戀椀渀椀愀?瀀猀攀甀搀漀愀挀愀挀椀愀??椀??椀渀?甀渀挀漀渀琀愀洀椀渀愀琀攀搀?愀渀搀?栀攀愀瘀礀?洀攀琀愀氀?挀漀渀琀愀洀椀渀愀琀攀搀?猀漀椀氀猀??匀漀椀氀??椀漀氀??椀漀挀栀攀洀??? ?????????????????戀爀??嬀??崀??椀渀??吀???栀攀渀?夀??儀甀??夀??攀琀?愀氀???搀?栀攀愀瘀礀?洀攀琀愀氀?愀渀搀?瀀氀愀渀琀猀??爀愀琀栀攀爀?琀栀愀渀?猀漀椀氀?渀甀琀爀椀攀渀琀?挀漀渀搀椀琀椀漀渀猀??愀昀昀攀挀琀?猀漀椀氀?愀爀戀甀猀挀甀氀愀爀?洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最愀氀?搀椀瘀攀爀猀椀琀礀?椀渀?最爀攀攀渀?猀瀀愀挀攀猀?搀甀爀椀渀最?甀爀戀愀渀椀稀愀琀椀漀渀??匀挀椀?吀漀琀愀氀??渀瘀椀爀漀渀??? ? ???????????????戀爀??嬀??崀?吀椀愀渀????匀栀椀?匀????愀??一??攀琀?愀氀???漀?攀瘀漀氀甀琀椀漀渀愀爀礀?愀猀猀漀挀椀愀琀椀漀渀猀?戀攀琀眀攀攀渀?爀漀漀琀?愀猀猀漀挀椀愀琀攀搀?洀椀挀爀漀戀椀漀洀攀猀?愀渀搀?爀漀漀琀?琀爀愀渀猀挀爀椀瀀琀漀洀攀猀?椀渀?眀椀氀搀?愀渀搀?挀甀氀琀椀瘀愀琀攀搀?爀椀挀攀?瘀愀爀椀攀琀椀攀猀??倀氀愀渀琀?倀栀礀猀椀漀氀??椀漀挀栀攀洀??? ??????????????????戀爀??嬀??崀??攀渀最?夀???椀?夀??圀攀渀?夀??攀琀?愀氀??吀爀愀渀猀挀爀椀瀀琀漀洀攀?愀渀愀氀礀猀椀猀?瀀爀漀瘀椀搀攀猀?洀漀氀攀挀甀氀愀爀?攀瘀椀搀攀渀挀攀猀?昀漀爀?最爀漀眀琀栀?愀渀搀?愀搀愀瀀琀愀琀椀漀渀?漀昀?瀀氀愀渀琀?爀漀漀琀猀?椀渀?挀愀搀椀洀椀甀洀?挀漀渀琀愀洀椀渀愀琀攀搀?攀渀瘀椀爀漀渀洀攀渀琀猀???挀漀琀漀砀椀挀漀氀??渀瘀椀爀漀渀?匀愀昀??? ? ??? ?????? ???
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘琛,林义成,郭彬,李凝玉,李华,傅庆林. 丛枝菌根真菌通过改变植物基因表达水平和微生物群落结构促进红叶石楠对镉的吸收[J]. 生物工程学报, 2022, 38(1): 287-302

复制
分享
文章指标
  • 点击次数:331
  • 下载次数: 1154
  • HTML阅读次数: 1279
  • 引用次数: 0
历史
  • 收稿日期:2021-03-03
  • 在线发布日期: 2022-01-25
文章二维码
您是第6080919位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司