长爪栘[木衣]叶绿体基因组特征系统发育及密码子偏好性分析
作者:
基金项目:

国家自然科学基金(32060350)


Chloroplast genome phylogeny and codon preference of Docynia longiunguis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长爪栘[木衣] (Docynia longiunguis Q. Luo & J. L. Liu) 是我国特有的栘[木衣]属植物,具有较高的食药用价值。对其叶绿体基因组进行分析,有助于阐明栘[木衣]属内的系统发育关系,为长爪栘[木衣]资源的开发利用及进一步研究奠定基础。结合其近缘种云南栘[木衣]叶绿体基因组数据,在进行全序列比对后,对其系统发育、密码子偏好性等进行分析。长爪栘[木衣]叶绿体基因组序列总长为158 914 bp (GenBank登录号为MW367027),总GC含量为36.7%,其中大的单拷贝区(large single-copy, LSC) 长度为87 020 bp,小的单拷贝区(small single-copy, SSC) 长度为19 156 bp,反向重复区(inverted repeats, IRs) 长度为26 369 bp。共注释了102个功能性基因,包括72个蛋白编码基因、26个编码tRNA基因和4个编码rRNA基因。构建系统发育树的最佳模型为TVM+F+R2。系统发育分析结果表明,长爪栘[木衣]与栘[木衣] (Docynia indica (Wall.) Dcne.) 聚为一支,栘[木衣]属物种与苹果属(Malus) 聚为一支。对长爪栘[木衣]及近缘种叶绿体基因组序列进行比对分析,trnY (GUA)-psbDndhC-trnV (UAC)、accD-psaIpsbZ-trnFM (CAU) 和ndhF-trnL等区域的变异较大,核酸多样性分析则表明有11处Pi值> 0.01的高变区域,且都位于LSC区及SSC区。除长爪栘[木衣]外,其他序列中均有trnH基因位于IRs/LSC区交界处且都没有越过边界。密码子偏好分析显示,长爪栘[木衣]叶绿体基因中异亮氨酸的密码子编码数量最多,达到了1 205个。长爪栘[木衣]与山荆子(Malus baccata (L.) Borkh.)、三叶海棠(Malus sieboldii (Regel) Rehd.)、湖北海棠(Malus hupehensis (Pamp.) Rehd.) 及木瓜(Chaenomeles sinensis (Thouin) Koehne) 的亲缘关系最近;其叶绿体基因密码子更偏好于使用A/T结尾;长爪栘[木衣]叶绿体基因组与其他蔷薇科植物叶绿体基因组在4个边界区域基因分布显示出较大差异,与同属的云南栘[木衣]及栘[木衣]叶绿体基因组差异相对较小。长爪栘[木衣]叶绿体基因组的组装注释、系统发育分析及序列比对分析,为该物种的资源鉴定、开发和利用提供了理论依据。

    Abstract:

    Docynia longiunguis is a plant uniquely present in China and is of high edible and medicinal value. The analysis of its chloroplast genome will help clarify the phylogenetic relationship among Docynia and facilitate the development and utilization of D. longiunguis resources. Based on the alignment of chloroplast genome sequences of related species, the phylogeny and codon preference were analyzed. The total length of D. longiunguis chloroplast genome sequence was 158 914 bp (GenBank accession number is MW367027), with an average GC content of 36.7%. The length of the large single-copy (LSC), the small single-copy (SSC), and inverted repeats (IRs) are 87 020 bp, 19 156 bp, and 26 369 bp, respectively. A total of 102 functional genes were annotated, including 72 protein-coding genes, 26 tRNA genes, and 4 rRNA genes. The best model for constructing phylogenetic tree was TVM+F+R2. D. longiunguis and Docynia indica were clustered into a single group, while Docynia and Malus were clustered into a single group. Comparison of the chloroplast genome sequences of D. longiunguis and its five related species revealed that trnY (GUA)-psbD, ndhC-trnV (UAC), accD-psaI, psbZ-trnfM (CAU), ndhF-trnL gene regions varied greatly. The nucleic acid diversity analysis showed that there were 11 high variation areas with nucleotide variability > 0.01, all were located in the LSC and SSC regions. Except for D. longiunguis, the trnH genes in other sequences were located at the IRs/LSC junction and did not cross the boundary. Codon preference analysis showed that D. longiunguis chloroplast genome has the largest number of isoleucine (Ile) codons, up to 1 205. D. longiunguis has the closest genetic relationship with Malus baccata, Malus sieboldii, Malus hupehensis and Chaenomeles sinensis. Its chloroplast genome codon prefers to end with A/T. The chloroplast genome of D. longiunguis and other Rosaceae chloroplast genomes showed great differences in gene distribution in four boundary regions, while relatively small differences from the chloroplast genomes of Docynia delavayi and D. indica of the same genus were observed. The genome annotation, phylogenetic analysis and sequence alignment of chloroplast genome of D. longiunguis may facilitate the identification, development and utilization of this species.

    参考文献
    [1] Bansal KC, Saha D. Chloroplast genomics and genetic engineering for crop improvement. Agric Res, 2012, 1(1): 53-66.
    [2] Wei W, Youliang Z, Li C, et al. PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China. Hereditas, 2005, 142(2005): 24-32.
    [3] Daniell H, Lin CS, Yu M, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol, 2016, 17(1): 134.
    [4] Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135-1145.
    [5] Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet, 2020, 21(10): 597-614.
    [6] Paajanen P, Kettleborough G, López-Girona E, et al. A critical comparison of technologies for a plant genome sequencing project. Gigascience, 2019, 8(3): giy163.
    [7] Yildiz G, Ozkilinc H. First characterization of the complete mitochondrial genome of fungal plant-pathogen Monilinia laxa which represents the mobile intron rich structure. Sci Rep, 2020, 10: 13644.
    [8] Priest SJ, Yadav V, Heitman J. Advances in understanding the evolution of fungal genome architecture. F1000 Res, 2020, 9: 776.
    [9] Cui H, Ding Z, Zhu Q, et al. Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer. Sci Rep, 2021, 11(1): 1595.
    [10] Henriquez CL, Abdullah, Ahmed I, et al. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics, 2020, 112(3): 2349-2360.
    [11] Park I, Song JH, Yang SY, et al. Comparative analysis of Actaea chloroplast genomes and molecular marker development for the identification of authentic cimicifugae rhizoma. Plants, 2020, 9(2): 157.
    [12] Zheng G, Wei L, Ma L, et al. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. Plant Mol Biol, 2020, 102(6): 659-676.
    [13] Zhou XJ, Zhang K, Peng ZF, et al. Comparative analysis of chloroplast genome characteristics between Paeonia jishanensis and other five species of Paeonia. Sci Silvae Sin, 2020, 56(4): 82-88 (in Chinese). 周晓君, 张凯, 彭正锋, 等. 矮牡丹与芍药属其他5个种叶绿体基因组特征的比较. 林业科学, 2020, 56(4): 82-88.
    [14] Su N, He ZF, Ou PH, et al. Comparative analysis of the chloroplast genome in Triticum species. J Triticeae Crop, 2020, 40(1): 55-64 (in Chinese). 苏宁, 何兆峰, 欧平和, 等. 小麦属植物叶绿体基因组结构的比较分析. 麦类作物学报, 2020, 40(1): 55-64.
    [15] Lu DY, Zhang L, Zhang GS, et al. Chloroplast genome structure and variation of Salicaceae plants. J Northwest A F Univ (Nat Sci Ed), 2020, 48(2): 87-94, 101 (in Chinese). 路东晔, 张磊, 张国盛, 等. 杨柳科植物叶绿体基因组结构及变异分析. 西北农林科技大学学报(自然科学版), 2020, 48(2): 87-94, 101.
    [16] Jiang WJ, Guo MY, Pang XH. Application of chloroplast genome in identification and phylogenetic analysis of medicinal plants. World Chin Med, 2020, 15(5): 702-708, 716 (in Chinese). 姜汶君, 郭梦月, 庞晓慧. 叶绿体基因组在药用植物鉴定及系统进化研究中的应用. 世界中医药, 2020, 15(5): 702-708, 716.
    [17] Xie BB. Phylogeography study of Siraitia grosvenorii[D]. Guilin: Guangxi Normal University, 2019 (in Chinese). 解兵斌. 罗汉果的谱系地理学研究[D]. 桂林: 广西师范大学, 2019.
    [18] Androsiuk P, Jastrzębski JP, Paukszto Ł, et al. Evolutionary dynamics of the chloroplast genome sequences of six Colobanthus species. Sci Rep, 2020, 10(1): 11522.
    [19] Duan YZ, Zhang K. Comparative analysis and phylogenetic evolution of the complete chloroplast genome of Ammopiptanthus. Acta Bot Boreali- Occidentalia Sin, 2020, 40(8): 1323-1332 (in Chinese). 段义忠, 张凯. 沙冬青属植物叶绿体基因组对比和系统发育分析. 西北植物学报, 2020, 40(8): 1323-1332.
    [20] Luo Q, Liu JL, Cai GZ. Docynia longiunguis Q. Luo et J.L. Liu, a new species of Docynia Dcne. from China. Bull Bot Res, 2011, 31(4): 389-391 (in Chinese). 罗强, 刘建林, 蔡光泽. 中国栘(木衣)属(Docynia Dcne. )一新种——长爪栘(木衣). 植物研究, 2011, 31(4): 389-391.
    [21] Peng ZH. Study on extraction and purification process of effective components from Docynia delavayi[D]. Kunming: Kunming University of Science and Technology, 2010 (in Chinese). 彭珍华. 云南栘衣有效成分提取纯化工艺的研究[D]. 昆明: 昆明理工大学, 2010.
    [22] Ci XT, Shi C, Wang DW, et al. Comparison and improvement of total RNA extraction methods from Docynia delavayi leaves. J Northwest For Univ, 2020, 35(3): 95-99 (in Chinese). 慈晓彤, 石辰, 王大玮, 等. 云南栘[木衣]叶片总RNA提取方法的比较与改进. 西北林学院学报, 2020, 35(3): 95-99.
    [23] Zhang XY, Yi K, Chen J, et al. Purified phlorizin from Docynia indica (wall. ) Decne by HSCCC, compared with whole extract, phlorizin and non-phlorizin fragment ameliorate obesity, insulin resistance, and improves intestinal barrier function in high-fat-diet-fed mice. Molecules, 2018, 23(10): E2701.
    [24] Liu HX, Liu G, Zhang XY, et al. Determination of polyphenol contents in Docynia Dcne. Food Sci, 2014, 35(24): 295-300 (in Chinese). 刘海霞, 刘刚, 张晓喻, 等. 栘[木衣]属植物多酚的含量测定与比较. 食品科学, 2014, 35(24): 295-300.
    [25] Han BY, Ren Y. An overview study of the Docynia delavayi. Private Technology, 2014(6): 267, 280 (in Chinese). 韩本勇, 任英. 云南栘依的研究概况. 民营科技, 2014(6): 267, 280.
    [26] Liu G, Wu J, Zhu MJ, et al. On evaluation of antioxidant activities and screening of potential antioxidant compounds from Docynia delavayi (Franch. ) Schneid. Leaves. J Southwest China Norm Univ (Nat Sci Ed), 2014, 39(9): 73-81 (in Chinese). 刘刚, 吴京, 朱明君, 等. 云南栘[木衣]叶提取物片段抗氧化活性及成分分析. 西南师范大学学报(自然科学版), 2014, 39(9): 73-81.
    [27] Li FS, Li MZ, Li J. Study of biological characteristics of Docynia delavayi (Fr. ) Schneid. Chin Hortic Abstr, 2010, 26(4): 94-95 (in Chinese). 李福寿, 李美珍, 李剑. 云南多依的生物学特性和物候特征研究. 中国园艺文摘, 2010, 26(4): 94-95.
    [28] Zhang LJ, Xia XY, Xu N, et al. An efficient method for genomic DNA extraction from mature tissues of blueberry (Vaccinium spp. ). Acta Agric Boreali-Sin, 2008, 23(S2): 205-208 (in Chinese). 张鲁杰, 夏秀英, 徐娜, 等. 高效提取越橘成熟组织基因组DNA的方法. 华北农学报, 2008, 23(S2): 205-208.
    [29] Chen Y. Comparative analysis of structural organization and evolution of Chrysanthemum and Ajania chloroplast genomes[D]. Nanjing: Nanjing Agricultural University, 2017 (in Chinese). 陈韵. 菊属、亚菊属叶绿体DNA的基因组结构与进化分析[D]. 南京: 南京农业大学, 2017.
    [30] Zheng Y, Zhang H, Wang QM, et al. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Hortic Sin, 2020, 47(12): 2439-2450 (in Chinese). 郑祎, 张卉, 王钦美, 等. 大花君子兰叶绿体基因组及其特征. 园艺学报, 2020, 47(12): 2439-2450.
    [31] Tillich M, Lehwark P, Pellizzer T, et al. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res, 2017, 45(w1): W6-W11.
    [32] Mu YN. Phylogenic and taxonomic research of Hypolepis in China based on the complete chloroplast genome[D]. Harbin: Harbin Normal University, 2020 (in Chinese). 穆雨农. 基于叶绿体全基因组对中国姬蕨属的系统分类学研究[D]. 哈尔滨: 哈尔滨师范大学, 2020.
    [33] Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30(12): 2725-2729.
    [34] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.
    [35] Jansen RK, Raubeson LA, Boore JL, et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol, 2005, 395: 348-384.
    [36] Wang DW, Shi C, Tang HY, et al. The complete chloroplast genome sequence of Docynia indica (Wall. ) Decne. Mitochondrial DNA Part B, 2019, 4(2): 3046-3048.
    [37] Zhang SD, Jin JJ, Chen SY, et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol, 2017, 214(3): 1355-1367.
    [38] Bi Y. Comparative chloroplast genomics of the genus Lilium[D]. Changchun: Jilin Agricultural University, 2017 (in Chinese). 毕彧. 百合属的比较叶绿体基因组学研究[D]. 长春: 吉林农业大学, 2017.
    [39] Jian HY, Zhang SD, Zhang T, et al. Characterization of the complete chloroplast genome of a critically endangered decaploid rose species, Rosa praelucens (Rosaceae). Conserv Genet Resour, 2018, 10(4): 851-854.
    [40] Zhao YH, Lu DX, Han RB, et al. The complete chloroplast genome sequence of the shrubby cinquefoil Dasiphora fruticosa (Rosales: Rosaceae). Conserv Genet Resour, 2018, 10(4): 675-678.
    [41] Wang WB, Yu H, Wang JH, et al. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Int J Mol Sci, 2017, 18(11): 2288.
    [42] Kyalo CM, Li ZZ, Mkala EM, et al. The first glimpse of Streptocarpus ionanthus (Gesneriaceae) phylogenomics: analysis of five subspecies' chloroplast genomes. Plants, 2020, 9(9): 456.
    [43] Cheng H, Li J, Zhang H, et al. The complete chloroplast genome sequence of strawberry (Fragaria×ananassa Duch. ) and comparison with related species of Rosaceae. PeerJ, 2017, 5: e3919.
    [44] Du X, Zeng T, Feng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L. ) and its phylogenetic relationship to other Brassicaceae species. Gene, 2020, 731: 144340.
    [45] An W, Li J, Yang Z, et al. Characteristics analysis of the complete Wurfbainia villosa chloroplast genome. Physiol Mol Biol Plants, 2020, 26(4): 747-758.
    [46] Dong WL, Wang RN, Zhang NY, et al. Molecular evolution of chloroplast genomes of orchid species: insights into phylogenetic relationship and adaptive evolution. Int J Mol Sci, 2018, 19(3): E716.
    [47] Dong W, Liu J, Yu J, et al. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One, 2012, 7(4): e35071.
    [48] Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res, 2004, 11(4): 247-261.
    [49] Celiński K, Kijak H, Wiland-Szymańska J. Complete chloroplast genome sequence and phylogenetic inference of the canary Islands dragon tree (Dracaena draco L. ). Forests, 2020, 11(3): 309.
    [50] Chen SF, Ishizuka W, Hara T, et al. Complete chloroplast genome of Japanese larch (Larix kaempferi): insights into intraspecific variation with an isolated northern limit population. Forests, 2020, 11(8): 884.
    [51] Tang P, Peng C. The rate and mode of chloroplast genome evolution. Bull Biol, 2010, 45(6): 8-10 (in Chinese). 唐萍, 彭程. 叶绿体基因组进化的速率和方式. 生物学通报, 2010, 45(6): 8-10.
    [52] Park I, Yang S, Kim WJ, et al. Sequencing and comparative analysis of the chloroplast genome of Angelica polymorpha and the development of a novel indel marker for species identification. Molecules, 2019, 24(6): E1038.
    [53] Xu C, Cai X, Chen Q, et al. Factors affecting synonymous Codon usage bias in chloroplast genome of Oncidium Gower Ramsey. Evol Bioinform, 2011, 7: 271-278.
    [54] Wang J, Wang TY, Wang LY, et al. Assembling and analysis of the whole chloroplast genome sequence of Elaeagnus angustifolia and its codon usage bias. Acta Bot Boreali-Occidentalia Sin, 2019, 39(9): 1559-1572 (in Chinese). 王婧, 王天翼, 王罗云, 等. 沙枣叶绿体全基因组序列及其使用密码子偏性分析. 西北植物学报, 2019, 39(9): 1559-1572.
    [55] Wang Y, Zhou JL, Tang DM, et al. Analysis of chloroplast genome characteristics and codon preference in broad-leaf kiwifruit. Seed, 2020, 39(5): 13-19 (in Chinese). 王宇, 周俊良, 唐冬梅, 等. 阔叶猕猴桃叶绿体基因组特征及密码子偏好性分析. 种子, 2020, 39(5): 13-19.
    [56] Zhang JW. The complete chloroplast genome and phylogenetic analysis of the endangered species Syringa pinnatifolia (Oleaceae)[D]. Yangling, China: Northwest A & F University, 2019 (in Chinese). 张靖雯. 濒危植物羽叶丁香叶绿体全基因组及系统发育研究[D]. 杨凌: 西北农林科技大学, 2019.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李连星,彭劲谕,王大玮,段安安. 长爪栘[木衣]叶绿体基因组特征系统发育及密码子偏好性分析[J]. 生物工程学报, 2022, 38(1): 328-342

复制
分享
文章指标
  • 点击次数:342
  • 下载次数: 1156
  • HTML阅读次数: 1180
  • 引用次数: 0
历史
  • 收稿日期:2021-04-16
  • 在线发布日期: 2022-01-25
文章二维码
您是第5990982位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司