茶树CsCCD基因家族全基因组鉴定及乌龙茶LED补光晾青下表达分析
作者:
基金项目:

财政部和农业农村部:国家现代农业(茶叶) 产业技术体系建设专项(CARS-19); 福建农林大学科技创新专项(CXZX2017177); 福建农林大学优秀硕士学位论文; 福建张天福茶叶发展基金会科技创新基金(FJZTF01)


Genome-wide identification of CsCCD gene family in tea plant (Camellia sinensis) and expression analysis of the oolong tea processing with supplementary LED light
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    类胡萝卜素裂解双加氧酶(carotenoid cleavage dioxygenase, CCD) 家族成员能催化类胡萝卜素裂解生成挥发性芳香物质并参与植物激素的合成。为探究茶树CsCCD基因家族成员生物学功能及基因表达模式,采用生物信息学手段进行了茶树全基因组CsCCD基因家族成员的鉴定,预测分析了其基因结构、保守基序、染色体定位、蛋白的理化性质、进化特性、互作网络、启动子顺式作用元件,并通过RT-qPCR测定了茶树不同叶位、乌龙茶加工过程中光照处理下CsCCD的相对表达量。共鉴定出11个茶树CsCCD基因家族成员,含有1–11个外显子、0–10个内含子不等;平均氨基酸个数为519 aa,平均分子质量为57 643.35 Da;聚类分析显示,CCD1、CCD4、CCD7、CCD8和NCED5个亚族各自聚成一类。茶树CsCCD基因家族主要含有胁迫响应元件、激素响应元件、光响应元件与多因素响应元件,且以光响应元件最多(142个)。进一步对茶树CsCCD基因在茶树不同叶位及乌龙茶加工过程中LED补光晾青过程的表达模式分析发现,CsCCD1CsCCD4在成熟叶中表达量高于嫩叶及嫩茎,且随做青次数的增加,表达量呈下降趋势,但LED补光可在做青前期显著促进其基因表达;NCED亚家族成员整体呈现嫩叶表达量高于成熟叶及嫩茎趋势,但在做青过程中表达趋势不一,NCED3的表达水平先升后降,最高可达鲜叶的15倍以上,且在做青后期LED补光可极显著促进其基因表达。茶树CsCCD基因家族成员表达情况受机械力及光照调控,可进一步为优化茶叶加工工艺并提升茶叶品质奠定基础。

    Abstract:

    Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.

    参考文献
    [1] Zhong QS, Chen CS, You XM, et al. Effect of processing conditions on flavor of Dangui oolong tea. Fujian J Agric Sci, 2010, 25(4): 468-474 (in Chinese). 钟秋生, 陈常颂, 游小妹, 等. 不同做青环境对丹桂秋季乌龙茶香气品质的影响. 福建农业学报, 2010, 25(4): 468-474.
    [2] Chen SS, Jin XY, You FN, et al. Influence of multi intermittence radiation by LED on flavor components in Tieguanyin tea. Trans Chin Soc Agric Eng, 2018, 34(2): 308-314 (in Chinese). 陈寿松, 金心怡, 游芳宁, 等. 多次间歇LED光照射对铁观音风味组分的影响. 农业工程学报, 2018, 34(2): 308-314.
    [3] Ni TC, Xu SS, Wei YM, et al. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-based proteomics. LWT, 2021, 147: 111614.
    [4] Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci, 2006, 63(19/20): 2291-2303.
    [5] Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276(5320): 1872-1874.
    [6] Auldridge ME, Block A, Vogel JT, et al. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J, 2006, 45(6): 982-993.
    [7] Serra S. Recent advances in the synthesis of carotenoid-derived flavours and fragrances. Molecules, 2015, 20(7): 12817-12840.
    [8] Timmins JJB, Kroukamp H, Paulsen IT, et al. The sensory significance of apocarotenoids in wine: importance of carotenoid cleavage dioxygenase 1 (CCD1) in the production of β-ionone. Molecules, 2020, 25(12): 2779.
    [9] Schreier P, Drawert F, Schmid M. Changes in the composition of neutral volatile components during the production of apple brandy. J Sci Food Agric, 1978, 29(8): 728-736.
    [10] Buttery RG, Teranishi R, Ling LC, et al. Quantitative and sensory studies on tomato paste volatiles. J Agric Food Chem, 1990, 38(1): 336-340.
    [11] Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189-194.
    [12] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195-200.
    [13] Zhang YF, Peng J, Zhu YS, et al. Genome wide identification of CCD gene family in Citrus and effect of CcCCD4a on the color of Citrus flesh. Sci Agric Sin, 2020, 53(9): 1874-1889 (in Chinese). 张亚飞, 彭洁, 朱延松, 等. 柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响. 中国农业科学, 2020, 53(9): 1874-1889.
    [14] Chen H, Zuo X, Shao H, et al. Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica). Plant Physiol Biochem, 2018, 123: 81-93.
    [15] Wei YP, Wan HJ, Wu ZM, et al. A comprehensive analysis of carotenoid cleavage dioxygenases genes in Solanum lycopersicum. Plant Mol Biol Report, 2016, 34(2): 512-523.
    [16] Lashbrooke JG, Young PR, Dockrall SJ, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol, 2013, 13: 156.
    [17] Zhou XT, Jia LD, Duan MZ, et al. Genome-wide identification and expression profiling of the carotenoid cleavage dioxygenase (CCD) gene family in Brassica napus L. PLoS One, 2020, 15(9): e0238179.
    [18] Hermanns AS, Zhou XS, Xu Q, et al. Carotenoid pigment accumulation in horticultural plants. Hortic Plant J, 2020, 6(6): 343-360.
    [19] Liu YC, Zhang C, Dong B, et al. Advances of CCD subfamily in higher plants. J Agric Biotechnol, 2019, 27(4): 720-734 (in Chinese). 刘玉成, 张超, 董彬, 等. 高等植物CCD亚家族基因研究进展. 农业生物技术学报, 2019, 27(4): 720-734.
    [20] Yue CN, Wang ZH, Shi XP, et al. Effects of light quality on aroma metabolites in tea: a review of recent literature. Food Sci, 2020, 41(5): 299-305 (in Chinese). 岳翠男, 王治会, 石旭平, 等. 光质对茶叶香气代谢物的影响研究进展. 食品科学, 2020, 41(5): 299-305.
    [21] Fu X, Chen Y, Mei X, et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci Rep, 2015, 5: 16858.
    [22] Tan BC, Joseph LM, Deng WT, et al. Molecular characterization of the Arabidopsis 9-Cis epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35(1): 44-56.
    [23] Vallabhaneni R, Bradbury LM, Wurtzel ET. The carotenoid dioxygenase gene family in maize, Sorghum, and rice. Arch Biochem Biophys, 2010, 504(1): 104-111.
    [24] Leng X, Wang P, Wang C, et al. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Sci Rep, 2017, 7(1): 4216.
    [25] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.
    [26] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783-791.
    [27] Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci, 1992, 8(3): 275-282.
    [28] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(w1): W293-W296.
    [29] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13(8): 1194-1202.
    [30] Feng J, Yang C, Lu JF, et al. Cloning and Cis-acting element analysis of CCD1 and CCD4 promoter in apricot. Acta Hortic Sin, 2020, 47(5): 939-952 (in Chinese). 冯靖, 杨灿, 卢娟芳, 等. 杏CCD1CCD4启动子克隆及顺式作用元件分析. 园艺学报, 2020, 47(5): 939-952.
    [31] Redman J, Whitcraft J, Johnson C, et al. Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Rep, 2002, 21(2): 180-185.
    [32] Zhang Y, Yin H, Li D, et al. The Cis-elements and transcription factors of plant environmental response promoters. China Biotechnol, 2007, 27(7): 122-128 (in Chinese). 张毅, 尹辉, 李丹, 等. 植物环境响应启动子的诱导元件及转录因子. 中国生物工程杂志, 2007, 27(7): 122-128.
    [33] Zhou ZW, Deng HL, Wu QY, et al. Validation of reference genes for gene expression studies in post-harvest leaves of tea plant (Camellia sinensis). Peer J, 2019, 7: e6385.
    [34] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25(4): 402-408.
    [35] Kim Y, Hwang I, Jung HJ, et al. Genome-wide classification and abiotic stress-responsive expression profiling of carotenoid oxygenase genes in Brassica rapa and Brassica oleracea. J Plant Growth Regul, 2016, 35(1): 202-214.
    [36] Walter MH, Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep, 2011, 28(4): 663-692.
    [37] Schwartz SH, Qin XQ, Loewen MC. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem, 2004, 279(45): 46940-46945.
    [38] Ahrazem O, Trapero A, Gómez MD, et al. Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics, 2010, 96(4): 239-250.
    [39] Ahrazem O, Rubio-Moraga A, Argandoña-Picazo J, et al. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Mol Biol, 2016, 91(3): 355-374.
    [40] Liu YC, Wang YG, Zhang C, et al. Cloning and transient expression assay of OfCCD1 gene promoters from Osmanthus fragrans. J Zhejiang A F Univ, 2018, 35(4): 596-603 (in Chinese). 刘玉成, 王艺光, 张超, 等. 桂花OfCCD1基因启动子克隆与表达特性. 浙江农林大学学报, 2018, 35(4): 596-603.
    [41] Wang JM, Wu B, Zhang N, et al. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering. J Agric Food Chem, 2020, 68(39): 10815-10821.
    [42] Wang JM, Zhang N, Zhao MY, et al. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering. J Agric Food Chem, 2020, 68(6): 1684-1690.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

倪子鑫,武清扬,杨云,邓慧莉,周子维,赖钟雄,孙云. 茶树CsCCD基因家族全基因组鉴定及乌龙茶LED补光晾青下表达分析[J]. 生物工程学报, 2022, 38(1): 359-373

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-17
  • 在线发布日期: 2022-01-25
文章二维码
您是第5990991位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司