云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析
作者:
基金项目:

浙江省重点研发计划项目(2021C02053); 浙江省“生物工程”一流学科学生创新计划项目(CX2020017)


Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    苯丙氨酸解氨酶(phenylalaninammo-nialyase,PAL) 是植物香气化合物中苯甲酸甲酯合成途径的关键酶。为探究云锦杜鹃Rhododendron fortunei RhPAL基因的功能,利用RT-PCR和cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE) 技术克隆RhPAL基因全长cDNA序列,并应用高效液相色谱-质谱(liquid chromatography-mass spectrometry,LC-MS) 联用技术分析云锦杜鹃不同发育阶段的不同组织中RhPAL基因表达水平和代谢物含量变化关系。结果表明,从云锦杜鹃花cDNA中克隆得到RhPAL基因,含有完整的cDNA开放阅读框(open reading frame,ORF) 序列长2 145 bp,编码715个氨基酸,与其他物种的PAL蛋白质氨基酸序列具有较高的同源性;qRT-PCR分析表明,在不同花期的花瓣中,RhPAL表达量呈上升趋势,在衰败期表达量最高,雌蕊的表达量远远高于雄蕊,同时,新叶高于老叶,叶片的表达量高于花瓣和花蕊。通过酶联检疫法检测分析云锦杜鹃不同花期的花瓣中PAL酶活性,在花苞期酶活性最高,衰败期最低,总体呈下降趋势。通过LC-MS技术,检测分析云锦杜鹃中苯丙氨酸(phenylalanine,L-Phe) 和肉桂酸(cinnamic acid,Ca) 的含量,发现在云锦杜鹃不同组织中苯丙氨酸和肉桂酸的含量变化趋势与RhPAL基因表达水平相一致,且均与RhPAL基因表达量呈高度相关。推测RhPAL在云锦杜鹃花香物质合成中发挥关键作用,本研究结果可为研究杜鹃花香气物质分子调控机制提供理论依据。

    Abstract:

    Phenylalaninammo-nialyase (PAL) is a key enzyme in the synthesis of methyl benzoate - a plant aroma compound. In order to understand the function of this enzyme in the formation of fragrance in the scented Rhododendron species-Rhododendron fortunei, we cloned a gene encoding this enzyme and subsequently examined the gene expression patterns and the profile of enzyme activity during development in various tissues. The full length of RhPAL gene was cloned by reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The expression levels of RhPAL gene were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and the amount of phenylalanine and cinnamic acid were assayed with LC-MS. The results showed that the ORF sequence of RhPAL gene amplified from the cDNA templates of flower buds had 2 145 bp, encoding 715 amino acids, and shared 90% homology to the PAL amino acid sequences from other species. qRT-PCR analysis showed that the expression of RhPAL in petals during flowering kept in rising even until the flowers wilted. The expression of RhPAL in pistil was much higher than that in stamen, while the expression in the younger leaves was higher than in old leaves. However, the expression level was relatively lower in petal and stamen compared to that in leaves. We also measured the PAL activity by Enzyme-linked immuno sorbent assay in the petals of flowers at different flowering stages. The results showed that PAL activity reached the highest at the bud stage and then decreased gradually to the lowest when the flowers wilted, which followed a similar trend in the emission of the flower fragrance. The phenylalanine and cinnamic acid contents measured by LC-MS were highly correlated to the expression level of RhPAL in various tissues and at different flowering stages, implying that RhPAL plays an important role in the formation of the flower fragrance. This work may facilitate the breeding and improvement of new fragrant Rhododendron cultivars.

    参考文献
    [1] Geng XM, Huan ZQ, Su JL, et al. Researches advances in germplasm innovation of rhododendrons. Mol Plant Breed, 2021, 19(2): 604-613 (in Chinese). 耿兴敏, 宦智群, 苏家乐, 等. 杜鹃花属植物种质创新研究进展. 分子植物育种, 2021, 19(2): 604-613.
    [2] Yang B, Xu QW, Niu MY, et al. Analysis of SSR information in transcriptome and development of SSR molecular markers in Rhododendron fortunei. J Nucl Agric Sci, 2018, 32(12): 2335-2345 (in Chinese). 杨彬, 许蔷薇, 牛明月, 等. 云锦杜鹃转录组SSR分析及其分子标记开发. 核农学报, 2018, 32(12): 2335-2345.
    [3] Xu QW, Lou XZ, Yang B, et al. Transcriptome sequencing and analysis of Rhododendron fortunei. J Zhejiang A & F Univ, 2019, 36(6): 1190-1198 (in Chinese). 许蔷薇, 楼雄珍, 杨彬, 等. 云锦杜鹃转录组分析. 浙江农林大学学报, 2019, 36(6): 1190-1198.
    [4] Piechulla B, Pott MB. Plant scents—mediators of inter- and intraorganismic communication. Planta, 2003, 217(5): 687-689.
    [5] Guterman I, Shalit M, Menda N, et al. Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell, 2002, 14(10): 2325-2338.
    [6] Pichersky E, Gang DR. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci, 2000, 5(10): 439-445.
    [7] Zhang CF, Xie XH, Wang QH, et al. Analysis of volatile components of Rhododendron fortunei at different flowering stages by HS-SPME-GC-MS and PCA. Guihaia, 2020, 40(7): 1033-1045 (in Chinese). 章辰飞, 谢晓鸿, 汪庆昊, 等. 云锦杜鹃不同花期挥发性成分的HS-SPME-GC-MS检测与主成分分析. 广西植物, 2020, 40(7): 1033-1045.
    [8] Wang WJ, Lv SJ, Wang QH, et al. Plant flowers metabolism and regulation is reviewed. Molecular Plant Breeding, 2021, 19(22): 7612-7617 (in Chinese). 王文静, 吕思佳, 汪庆昊, 等. 植物花香物质代谢与调控研究进展. 分子植物育种, 2021, 19(22): 7612-7617.
    [9] Barber MS, Mitchell HJ. Regulation of phenylpropanoid metabolism in relation to lignin biosynthesis in plants. International Review of Cytology. Amsterdam: Elsevier, 1997: 243-293.
    [10] Jones DH. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry, 1984, 23(7): 1349-1359.
    [11] Luo CL, Li L, Chen L, et al. Cloning, sequence characterization, expression profiling of hormones response of phenylalanine ammonia-lyase gene in Bletilla striata. Chin Tradit Herb Drugs, 2019, 50(3): 694-701 (in Chinese). 罗才林, 李林, 陈立, 等. 白及苯丙氨酸解氨酶基因的克隆、序列特征及激素响应表达分析. 中草药, 2019, 50(3): 694-701.
    [12] Dan Y. Cloning, expression and functional analysis of two phenylalanine ammomia-lysae genes of Camellia sinensis in response to low temperature and drought stress[D]. Chongqing: Southwest University, 2020 (in Chinese). 丹仪. 茶树两个响应低温与干旱胁迫的苯丙氨酸解氨酶基因克隆、表达与功能分析[D]. 重庆: 西南大学, 2020.
    [13] Sun RZ, Zhang X, Cheng G, et al. Genome-wide characterization and expression analysis of the phenylalanine ammonia-lyase gene family in grapevine (Vitis vinifera L. ). Plant Physiol J, 2016, 52(2): 195-208 (in Chinese). 孙润泽, 张雪, 成果, 等. 葡萄苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2016, 52(2): 195-208.
    [14] Yu GH, Wang GP, Wang L, et al. Cloning of PAL genes and their response to FHB in wheat. J Plant Genet Resour, 2015, 16(5): 1055-1061 (in Chinese). 虞光辉, 王桂平, 王亮, 等. 小麦PAL基因的克隆及赤霉菌诱导下的表达分析. 植物遗传资源学报, 2015, 16(5): 1055-1061.
    [15] Liang Y, Liu XY, Zhang HW, et al. Molecular cloning and expression analysis of AcPAL2 in onion. Acta Hortic Sin, 2015, 42(3): 505-512 (in Chinese). 梁毅, 刘小义, 张洪伟, 等. 洋葱苯丙氨酸解氨酶基因AcPAL2的克隆与表达分析. 园艺学报, 2015, 42(3): 505-512.
    [16] Gonda I, Davidovich-Rikanati R, Bar E, et al. Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L. ) fruit. Phytochemistry, 2018, 148: 122-131.
    [17] Gonda I, Bar E, Portnoy V, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot, 2010, 61(4): 1111-1123.
    [18] Tasaki Y, Miyakawa H. Structure and expression of two phenylalanine ammonia-lyase genes of the basidiomycete mushroom Tricholoma matsutake. Mycoscience, 2015, 56(5): 503-511.
    [19] Oliva M, Bar E, Ovadia R, et al. Phenylpyruvate contributes to the synthesis of fragrant benzenoid-phenylpropanoids in Petunia×hybrida flowers. Front Plant Sci, 2017, 8: 769.
    [20] Majetic CJ, Sinka BN. Diverging pathways: differential benzenoid and phenylpropanoid volatile production in Phlox subulata L. cultivars. Biochem Syst Ecol, 2013, 50: 75-81.
    [21] Zhao YQ, Zhou SJ, Peng PH, et al. Research advances in metabolic regulation and genetic engineering of floral scent. J Trop Subtrop Bot, 2011, 19(4): 381-390 (in Chinese). 赵印泉, 周斯建, 彭培好, 等. 植物花香代谢调节与基因工程研究进展. 热带亚热带植物学报, 2011, 19(4): 381-390.
    [22] Qiao F, Zhang L, Geng GG, et al. Cloning and expression of phenylalanine ammonialyase gene of Hordeum vulgare var. nudum under CoCl2 stress. J China Agric Univ, 2021, 26(3): 18-27 (in Chinese). 乔枫, 张丽, 耿贵工, 等. CoCl2胁迫下青稞苯丙氨酸解氨酶基因的克隆与表达分析. 中国农业大学学报, 2021, 26(3): 18-27.
    [23] He X, Liu X, Xin ZQ, et al. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate. Acta Agron Sin, 2021, 47(10): 1941-1952 (in Chinese). 何潇, 刘兴, 辛正琦, 等. 半夏PtPAL基因的克隆、表达与酶动力学分析. 作物学报, 2021, 47(10): 1941-1952.
    [24] Ma JY, Yang RD, Ao LG. Progress in biological research of phenylanlanine ammonialyase (E.C. 4.3.1.5). Mod Food Sci Technol, 2007, 23(7): 71-74, 97 (in Chinese). 马俊彦, 杨汝德, 敖利刚. 植物苯丙氨酸解氨酶的生物学研究进展. 现代食品科技, 2007, 23(7): 71-74, 97.
    [25] Hou P, Liang D, Zhang WG, et al. Study on temporospatial expression of PAL gene family in soybean. Crops, 2016(2): 57-62 (in Chinese). 侯鹏, 粱冬, 张卫国, 等. 苯丙氨酸解氨酶基因家族在大豆中的时空表达研究. 作物杂志, 2016(2): 57-62.
    [26] Qiao F, Geng GG, Zhang L, et al. Molecular cloning and expression patterns of LcPAL from Lycium chinense. J China Agric Univ, 2017, 22(12): 64-73 (in Chinese). 乔枫, 耿贵工, 张丽, 等. 枸杞苯丙氨酸解氨酶基因的克隆与表达分析. 中国农业大学学报, 2017, 22(12): 64-73.
    [27] Zhang XB, Liu CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant, 2015, 8(1): 17-27.
    [28] Shang QM, Li L, Dong CJ. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta, 2012, 236(4): 1093-1105.
    [29] Chen XM, Baldermann S, Cao SY, et al. Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget'. Plant Physiol Biochem, 2015, 87: 109-114.
    [30] Bera P, Mukherjee C, Mitra A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci, 2017, 256: 25-38.
    [31] Xu J. Studies on the volatile components in flowers of Chrysanthemum morifolium and the cytological basis for volatile emissions[D]. Taian: Shandong Agricultural University, 2012 (in Chinese) 徐瑾. 菊花香气成分及其挥发的细胞学基础研究[D]. 泰安: 山东农业大学, 2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕思佳,吴月燕,贾永红,何凡,蒋宝鑫,杨国霞,谢晓鸿. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析[J]. 生物工程学报, 2022, 38(1): 374-385

复制
分享
文章指标
  • 点击次数:410
  • 下载次数: 1233
  • HTML阅读次数: 1087
  • 引用次数: 0
历史
  • 收稿日期:2021-01-07
  • 在线发布日期: 2022-01-25
文章二维码
您是第5993281位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司