遗传密码扩充技术及其在蛋白质功能研究及标记成像中的应用
作者:
基金项目:

国家自然科学基金(81772190)


Genetic code expansion and its application in characterization and imaging of proteins
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    遗传密码扩充(genetic code expansion,GCE)技术利用终止密码子将非天然氨基酸掺入到蛋白质中,再结合点击反应对蛋白质实现定点标记。相较于荧光蛋白、标签抗体等其他标记工具,该技术在蛋白标记中使用的化合物分子较小、对蛋白空间结构影响较小,且能通过点击反应实现蛋白分子与染料分子1:1的化学计量比,从而能够依据荧光强度对蛋白质定量。因此,在活细胞单分子追踪和超分辨率显微成像等需要细胞长时间暴露在高激光功率下的研究中,GCE技术具有极大的优势。同时,该技术也为提高活细胞成像过程中的定位精度和分子计数准确度奠定了基础。文中旨在总结近年来GCE技术在蛋白质研究中的应用进展,特别是在蛋白质标记成像方面的应用进展。

    Abstract:

    Genetic code expansion (GCE) allows the incorporation of unnatural amino acids into proteins via using stop codons. GCE may achieve site-specific labeling of proteins in combination with the click reaction. Compared with other labeling tools such as fluorescent proteins and tagged antibodies, the compound molecules used in protein labeling by GCE technology are smaller, and therefore, may less interfere the conformational structure of proteins. In addition, through click reaction, GCE allows a 1:1 stoichiometric ratio of the target protein molecule and the fluorescent dye, and the protein can be quantified based on the fluorescence intensity. Thus, GCE technology has great advantages in the researches that require the exposition of living cells under high laser power for longer time, for example, in the context of single molecule tracing and super-resolution microscopic imaging. Meanwhile, this technology lays the foundation for improving the accuracy of positioning and molecule counting in the imaging process of living cells. This review summarized the GCE technology and its recent applications in functionally characterizing, labeling and imaging of proteins.

    参考文献
    [1] Wen L, Fan ZC, Mikulski Z, et al. Imaging of the immune system-towards a subcellular and molecular understanding. J Cell Sci, 2020, 133(5):S234922. DOI:10.1242/jcs.234922.
    [2] Specht EA, Braselmann E, Palmer AE. A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol, 2017, 79(1):93-117.
    [3] Elia N. Using unnatural amino acids to selectively label proteins for cellular imaging:a cell biologist viewpoint. Febs J, 2021, 288(4):1107-1117.
    [4] Brabham R, Fascione MA. Pyrrolysine amber stop-Codon suppression:development and applications. Chembiochem, 2017, 18(20):1973-1983.
    [5] Nikić I, Kang JH, Girona GE, et al. Labeling proteins on live mammalian cells using click chemistry. Nat Protoc, 2015, 10(5):780-791.
    [6] Yang Y, Lin SX, Lin W, et al. Ligand-assisted dual-site click labeling of EGFR on living cells. Chem Bio Chem, 2014, 15(12):1738-1743.
    [7] Segal I, Nachmias D, Arbely E, et al. A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag. bioRxiv, 2019. DOI:10.1101/708545.
    [8] Beliu G, Kurz AJ, Kuhlemann AC, et al. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun Biol, 2019, 2:261.
    [9] Young DD, Schultz PG. Playing with the molecules of life. ACS Chem Biol, 2018, 13(4):854-870.
    [10] Niu W, Schultz P, Guo JT. An expanded genetic code in mammalian cells with a functional quadruplet Codon. ACS Chem Biol, 2013, 8(7):1640-1645.
    [11] Fok JA, Mayer C. Genetic-code-expansion strategies for vaccine development. Chembiochem, 2020, 21(23):3291-3300.
    [12] Liu CC, Schultz PG. Adding new chemistries to the genetic code. Annu Rev Biochem, 2010, 79(1):413-444.
    [13] Smolskaya S, Andreev Y. Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein:methodology development and recent achievement. Biomolecules, 2019, 9(7):255.
    [14] Müller T, Sakin V, Müller B. A spotlight on viruses-application of click chemistry to visualize virus-cell interactions. Molecules, 2019, 24(3):481.
    [15] Jakob L, Gust A, Grohmann D. Evaluation and optimisation of unnatural amino acid incorporation and bioorthogonal bioconjugation for site-specific fluorescent labelling of proteins expressed in mammalian cells. Biochem Biophys Rep, 2019, 17:1-9.
    [16] Sakin V, Hanne J, Dunder J, et al. A versatile tool for live-cell imaging and super-resolution nanoscopy studies of HIV-1 env distribution and mobility. Cell Chem Biol, 2017, 24(5):635-645.e5.
    [17] Pott M, Schmidt MJ, Summerer D. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol, 2014, 9(12):2815-2822.
    [18] Xu H, Wang Y, Lu J, et al. Re-exploration of the Codon context effect on amber Codon-guided incorporation of noncanonical amino acids in Escherichia coli by the blue-white screening assay. Chembiochem, 2016, 17(13):1250-1256.
    [19] Lacoursiere RE, O'Donoghue P, Shaw GS. Programmed ubiquitin acetylation using genetic code expansion reveals altered ubiquitination patterns. FEBS Lett, 2020, 594(7):1226-1234.
    [20] Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol, 2010, 11(1):50-61.
    [21] Lin MZ, Schnitzer MJ. Genetically encoded indicators of neuronal activity. Nat Neurosci, 2016, 19(9):1142-1153.
    [22] Wang N, Wang L. Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods Enzymol, 2020, 639:167-189.
    [23] Roman-Arocho GM, Shang X, Niu W, et al. Design of fluorescent protein-based sensors through a general protection-deprotection strategy. Methods Enzymol, 2020, 640:63-82.
    [24] Li Q, Chen Q, Klauser PC, et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell, 2020, 182(1):85-97.e16.
    [25] Peng T, Hang HC. Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc, 2016, 138(43):14423-14433.
    [26] König AI, Sorkin R, Alon A, et al. Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins. bioRxiv, 2020. DOI:10.1101/660118.
    [27] Grimm JB, English BP, Choi H, et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods, 2016, 13(12):985-988.
    [28] Serfling R, Seidel L, Bock A, et al. Quantitative single-residue bioorthogonal labeling of G protein-coupled receptors in live cells. ACS Chem Biol, 2019, 14(6):1141-1149.
    [29] Saal KA, Richter F, Rehling P, et al. Combined use of unnatural amino acids enables dual-color super-resolution imaging of proteins via click chemistry. ACS Nano, 2018, 12(12):12247-12254.
    [30] Uttamapinant C, Howe JD, Lang K, et al. Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc, 2015, 137(14):4602-4605.
    [31] Nikić I, Lemke EA. Genetic code expansion enabled site-specific dual-color protein labeling:superresolution microscopy and beyond. Curr Opin Chem Biol, 2015, 28:164-173.
    [32] Schvartz T, Aloush N, Goliand I, et al. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging. Mol Biol Cell, 2017, 28(21):2747-2756.
    [33] Neubert F, Beliu G, Terpitz U, et al. Bioorthogonal click chemistry enables site-specific fluorescence labeling of functional NMDA receptors for super-resolution imaging. Angew Chem Int Ed Engl, 2018, 57(50):16364-16369.
    [34] Bajar BT, Wang ES, Zhang S, et al. A guide to fluorescent protein FRET pairs. Sensors (Basel), 2016, 16(9):E1488.
    [35] Park SH, Ko W, Park SH, et al. Evaluation of the interaction between bax and Hsp70 in cells by using a FRET system consisting of a fluorescent amino acid and YFP as a FRET pair. ChemBioChem, 2020, 21(1/2):59-63.
    [36] Jones CM, Venkatesh Y, Petersson EJ. Protein labeling for FRET with methoxycoumarin and acridonylalanine. Methods Enzymol, 2020, 639:37-69.
    [37] Das DK, Govindan R, Nikić-Spiegel I, et al. Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell, 2018, 174(4):926-937.e12.
    [38] Meineke B, Heimgärtner J, Eirich J, et al. Site-specific incorporation of two ncAAs for two-color bioorthogonal labeling and crosslinking of proteins on live mammalian cells. Cell Rep, 2020, 31(12):107811.
    [39] Lu M, Ma X, Castillo-Menendez LR, et al. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature, 2019, 568(7752):415-419.
    [40] Zhang Y, Du Y, Li M, et al. Activity-based genetically encoded fluorescent and luminescent probes for detecting formaldehyde in living cells. Angew Chem Int Ed Engl, 2020, 59(38):16352-16356.
    [41] 储军, 施华, 杨杰, 等. 分子与细胞事件的光学可视化——解读2008年诺贝尔化学奖. 生物化学与生物物理进展, 2008, 35(10):1104-1111. Chu J, Shi H, Yang J, et al. Optical visualization of molecular and cellular events:to decode 2008 Nobel prize in chemistry. Prog Biochem Biophys, 2008, 35(10):1104-1111(in Chinese).
    [42] Ai HW. Fluorescent-protein-based probes:general principles and practices. Anal Bioanal Chem, 2015, 407(1):9-15.
    [43] Liu X, Li J, Hu C, et al. Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl, 2013, 52(18):4805-4809.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李哲,凌虹. 遗传密码扩充技术及其在蛋白质功能研究及标记成像中的应用[J]. 生物工程学报, 2022, 38(2): 620-631

复制
分享
文章指标
  • 点击次数:458
  • 下载次数: 1472
  • HTML阅读次数: 1218
  • 引用次数: 0
历史
  • 收稿日期:2021-03-25
  • 在线发布日期: 2022-02-25
文章二维码
您是第6005455位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司