多形汉逊酵母代谢改造生产脂肪酸及发酵条件优化
作者:
基金项目:

国家自然科学基金(21922812,21808216);兴辽英才计划(XLYC1807191);大连市科技创新基金(2019J12GX030)


Production of fatty acids by engineered Ogataea polymorpha
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脂肪酸作为一种化工原料,在生物能源、化妆品、个人护理产品和工业润滑剂等领域具有广泛应用。多形汉逊酵母因其能够利用甲醇、耐高温、底物谱广等优点,被认为是微生物细胞工厂的理想底盘宿主。本研究首先通过代谢工程构建了产脂肪酸的汉逊酵母细胞工厂。在此基础上,通过发酵条件优化进一步提升了工程菌株生产性能。在温度37℃、pH 6.4、培养基碳氮摩尔比为120、种子液OD600在6–8之间时,摇瓶中工程菌脂肪酸产量达到1.86 g/L。在发酵罐中,采用溶氧(DO)关联法控制补料速度,初始培养基碳氮摩尔比为17.5,在DO高于30%时,补料碳氮摩尔比为120的葡萄糖培养基,脂肪酸产量达到18.0 g/L,显示了汉逊酵母作为脂肪酸合成细胞工厂的潜力,为实现工业化奠定了坚实的理论与应用基础。

    Abstract:

    Fatty acids (FA) are widely used as feed stocks for the production of cosmetics, personal hygiene products, lubricants and biofuels. Ogataea polymorpha is considered as an ideal chassis for bio-manufacturing, due to its outstanding characteristics such as methylotroph, thermal-tolerance and wide substrate spectrum. In this study, we harnessed O. polymorpha for overproduction of fatty acids by engineering its fatty acid metabolism and optimizing the fermentation process. The engineered strain produced 1.86 g/L FAs under the optimized shake-flask conditions (37℃, pH 6.4, a C/N ratio of 120 and an OD600 of seed culture of 6-8). The fed-batch fermentation process was further optimized by using a dissolved oxygen (DO) control strategy. The C/N ratio of initial medium was 17.5, and the glucose medium with a C/N ratio of 120 was fed when the DO was higher than 30%. This operation resulted in a titer of 18.0 g/L FA, indicating the potential of using O. polymorpha as an efficient cell factory for the production of FA.

    参考文献
    [1] Statistical review of world energy. Britain[EB/OL].[2021-03-04]. http://www.indiaenvironmentportal.org.in/files/file/bp-stats-review-2020-full-report.pdf.
    [2] Zhou YJ, Buijs NA, Zhu ZW, et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun, 2016, 7:11709.
    [3] 高教琪, 段兴鹏, 周雍进. 酵母细胞工厂生产脂肪酸及其衍生物. 生物加工过程, 2018, 16(1):19-30. Gao JQ, Duan XP, Zhou YJ. Production of fatty acids and their derivatives by yeast cell factories. Chin J Bioprocess Eng, 2018,16(1):19-30(in Chinese).
    [4] Nielsen J. Yeast cell factories on the horizon. Science, 2015, 349(6252):1050-1051.
    [5] Colin VL, Rodríguez A, Cristóbal HA. The role of synthetic biology in the design of microbial cell factories for biofuel production. J Biomed Biotechnol, 2011, 2011:601834.
    [6] Van Dijl JM, Hecker M. Bacillus subtilis:from soil bacterium to super-secreting cell factory. Microb Cell Fact, 2013, 12:3.
    [7] Tornqvist EGM, Peterson WH. Penicillin production by high-yielding strains of Penicillium chrysogenum. Appl Microbiol, 1956, 4(5):277-283.
    [8] Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol, 2018, 256:502-508.
    [9] Xiao Y, Bowen CH, Liu D, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol, 2016, 12(5):339-344.
    [10] Ledesma-Amaro R, Dulermo R, Niehus X, et al. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng, 2016, 38:38-46.
    [11] Yu T, Zhou YJ, Huang MT, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell, 2018, 174(6):1549-1558.
    [12] 高教琪, 周雍进. 甲醇生物转化的机遇与挑战. 合成生物学, 2020, 1(2):158-173. Gao JQ, Zhou YJ. Advances in methanol bio-transformation. Syn Bio J, 2020, 1(2):158-173(in Chinese).
    [13] Van Dijk R, Faber KN, Kiel JAKW, et al. The methylotrophic yeast Hansenula polymorpha:a versatile cell factory. Enzyme Microb Technol, 2000, 26(9/10):793-800.
    [14] 陈凤菊, 卢善发, 胡敦孝. 多形汉逊酵母外源基因表达系统. 生物工程学报, 2001, 17(3):246-249. Chen FJ, Lu SF, Hu DX. Advances in the expression of foreign genes in Hansenula polymorpha. Chin J Biotech, 2001, 17(3):246-249(in Chinese).
    [15] Manfrão-Netto JHC, Gomes AMV, Parachin NS. Advances in using Hansenula polymorpha as chassis for recombinant protein production. Front Bioeng Biotechnol, 2019, 7:94.
    [16] 李巍巍, 何秀萍, 郭雪娜, 等. 人乳头瘤病毒16亚型L1蛋白在多形汉逊酵母中的优化表达. 生物工程学报, 2009, 25(10):1516-1523. Li WW, He XP, Guo XN, et al. Optimized expression of the L1 protein of human papillomavirus in Hansenula polymorpha. Chin J Biotech, 2009, 25(10):1516-1523(in Chinese).
    [17] Bredell H, Smith JJ, Görgens JF, et al. Expression of unique chimeric human papilloma virus type 16(HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast, 2018, 35(9):519-529.
    [18] Talebkhan Y, Samadi T, Samie A, et al. Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol, 2016, 8(1):21-28.
    [19] Wetzel D, Müller JM, Flaschel E, et al. Fed-batch production and secretion of streptavidin by Hansenula polymorpha:evaluation of genetic factors and bioprocess development. J Biotechnol, 2016, 225:3-9.
    [20] Bredell H, Smith JJ, Prins WA, et al. Expression of rotavirus VP6 protein:a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Res, 2016, 16(2):fow001.
    [21] Kata I, Semkiv MV, Ruchala J, et al. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Yeast, 2016, 33(8):471-478.
    [22] 钱卫东, 施春阳, 王婷. 多形汉逊酵母作为细胞工厂的应用研究进展. 中国畜牧兽医, 2012, 39(4):55-59. Qian WD, Shi CY, Wang T. Progress in research on the methylotrophic yeast Hansenula polymorpha cell factory. Chin J Vet Med, 2012, 39(4):55-59(in Chinese).
    [23] Broach JR. Nutritional control of growth and development in yeast. Genetics, 2012, 192(1):73-105.
    [24] 刘龙, 李江华, 堵国成, 等. 发酵过程优化与控制技术的研究进展与展望//中国生物工程学会2014年学术年会暨全国生物技术大会. 温州:中国生物工程学会, 2014. Liu L, Li J, Du G, et al. Progress on fermentation optimization and control technology. Wenzhou:Annual meeting of Chinese Society of Biotechnology, 2014.
    [25] Sokchea H, Thi HP, Dinh PL, et al. Effect of time, C/N ratio and molasses concentration on Saccharomyces cerevisiae biomass production. J Vet Anim Res, 2018, 1(1):1-7.
    [26] Gao JQ, Gao N, Zhai XX, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience, 2021, 24(3):102168.
    [27] 刘爽, 高教琪, 薛闯, 等. 多形汉逊酵母提高生长性能的培养基优化. 生物加工过程, 2020, 18(1):116-125. Liu S, Gao JQ, Xue C, et al. Medium optimization for growth of Ogataea polymorpha. Chin J Bioprocess Eng. 2020, 18(1):116-125(in Chinese).
    [28] Kerkhoven EJ, Kim YM, Wei SW, et al. Leucine biosynthesis is involved in regulating high lipid accumulation in Yarrowia lipolytica. mBio, 2017, 8(3):e00857-17.
    [29] Charoenrat T, Antimanon S, Kocharin K, et al. High cell density process for constitutive production of a recombinant phytase in thermotolerant methylotrophic yeast Ogataea thermomethanolica using table sugar as carbon source. Appl Biochem Biotechnol, 2016, 180(8):1618-1634.
    [30] 高琳惠, 蔡鹏, 周雍进. 甲醇酵母代谢工程研究进展. 生物工程学报, 2021, 37(3):1-14. Gao LH, Cai P, Zhou YJ. Advances in metabolic engineering of methylotrophic yeasts. Chin J Biotech, 2021, 37(3):1-14(in Chinese).
    引证文献
引用本文

冯叨,高教琪,龚志伟,周雍进. 多形汉逊酵母代谢改造生产脂肪酸及发酵条件优化[J]. 生物工程学报, 2022, 38(2): 760-771

复制
分享
文章指标
  • 点击次数:567
  • 下载次数: 1358
  • HTML阅读次数: 1681
  • 引用次数: 0
历史
  • 收稿日期:2021-01-31
  • 在线发布日期: 2022-02-25
文章二维码
您是第6005455位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司