基因编辑技术在大肠杆菌中的应用
作者:
基金项目:

国家自然科学基金(32070936);辽宁省科学技术厅-2021年中央引导地方科技发展资金计划(第一批)项目(2021JH6/10500147)


Application of gene editing technology in Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [74]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用基因编辑技术对大肠杆菌基因组进行改造可以研究基因功能,或改变其代谢途径大量生产原本成本较高的产物,从而获得可以生产特定产物的遗传稳定性工程菌株。目前可以对细菌基因组编辑的方法有Red同源重组、CRISPR/Cas9技术等。Red同源重组是比较传统的基因编辑技术,应用广泛,但编辑效率受整合片段大小的限制,基因编辑过程比较烦琐,且重组后基因组会有FRT位点残留。CRISPR/Cas9技术应用广泛,可靶向基因组特定位置进行编辑,但需要根据编辑位点设计特定的DNA打靶片段。随着人们对这两种技术越来越深入的研究,衍生出了多种复合基因编辑技术。如Red同源重组和归巢核酸内切酶Ⅰ-SceⅠ的联合运用,Red同源重组和CRISPR/Cas9的联合运用等。本文总结了常用的几种基因编辑技术及复合基因编辑技术的基本原理及在大肠杆菌中的应用,可为原核生物基因编辑方法的选择提供依据。

    Abstract:

    Gene editing technology can be used to modify the genome of Escherichia coli for the investigation of gene functions,or to change the metabolic pathways for the efficient production of high-value products in engineered strains with genetic stability.A variety of gene editing technologies have been applied in prokaryotes,such as λ-Red homologous recombination and CRISPR/Cas9.As a traditional gene editing technique,λ-Red recombination is widely used.However,it has a few shortcomings,such as the limited integration efficiency by the integrated fragment size,the cumbersome gene editing process,and the FRT scar in the genome after recombination.CRISPR/Cas9 is widely used for genome editing at specific sites,which requires specific DNA segments according to the editing site.As the understanding of the two technologies deepens,a variety of composite gene editing techniques have been developed,such as the application of λ-Red homologous recombination in combination with homing endonucleaseⅠ-SceⅠ or CRISPR/Cas9.In this review,we summarized the basic principles of common gene editing techniques and composite gene editing techniques,as well as their applications in Escherichia coli,which can provide a basis for the selection of gene editing methods in prokaryotes.

    参考文献
    [1] Westers H, Dorenbos R, Van Dijl J, et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol, 2003, 20(12):2076-2090.
    [2] Chen Z, Ling W, Shang G. Recombineering and Ⅰ-SceⅠ-mediated Pseudomonas putida KT2440 scarless gene deletion. FEMS Microbiol Lett, 2016, 363(21):fnw231.
    [3] Heinemann M, Panke S. Synthetic biology-putting engineering into biology. Bioinformatics, 2006, 22(22):2790-2799.
    [4] He F, Murabito E, Westerhoff HV. Synthetic biology and regulatory networks:where metabolic systems biology meets control engineering. J Royal Soc Interface, 2016, 13(117):20151046.
    [5] Krishnamurthy M, Moore R, Rajamani S, et al. Bacterial genome engineering and synthetic biology:combating pathogens. BMC Microbiol, 2016, 16(1):258.
    [6] Choi K, Jang W, Yang D, et al. Systems metabolic engineering strategies:integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol, 2019, 37(8):817-837.
    [7] Huang C, Ding T, Wang J, et al. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Appl Microbiol Biot, 2019, 103(20):8497-8509.
    [8] Yura T, Mori H, Nagai H, et al. Systematic sequencing of the E. coli genome analysis of the 0-2.4 min region. Nucleic Acids Res, 1992, 20(13):3305-3308.
    [9] Fujita N, Mori H, Yura T, et al. Systematic sequencing of the E. coli genome analysis of the 2.4-4.1 min (110917-193643 bp) region. Nucleic acids Res, 1994, 22(9):1637-1639.
    [10] Blattner FR, Plunkett 3rd G, Bloch CA, et al. The complete genome sequence of E. coli K-12. Science, 1997, 277(5331):1453-1462.
    [11] González-Torres P, Rodríguez-Mateos F, Antón J, et al. Impact of homologous recombination on the evolution of prokaryotic core genomes. mBio, 2019, 10(1):e02494-18.
    [12] Cox MM. The RecA protein as a recombinational repair system. Mol Microbiol, 1991, 5(6):1295-1299.
    [13] Singleton MR, Dillingham MS, Gaudier M, et al. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature, 2004, 432(11):187-193.
    [14] 张雪,温廷益. Red重组系统用于大肠杆菌基因修饰研究进展.中国生物工程杂志, 2008, 28(12):89-93. Zhang X, Wen TY. Advances of red recombination system in Escherichia coli gene modification. China Biotechnol, 2008, 28(12):89-93(in Chinese).
    [15] Poteete A. What makes the bacteriophage lambda red system useful for genetic engineering:molecular mechanism and biological function. FEMS Microbiol Lett, 2001, 201(1):9-14.
    [16] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 2000, 97(12):6640-6645.
    [17] 李文静,刘锦燕,史册,等.融合PCR结合同源重组技术敲除白色假丝酵母菌FLO8基因.上海交通大学学报(医学版), 2016, 36(3):334-339. Li WJ, Liu JY, Shi C, et al. Knock out FLO8 gene in Candida albicans by fusion PCR combined with homologous recombination. J Shanghai Jiao Tong Univ (Med Sci), 2016, 36(3):334-339(in Chinese).
    [18] 李素梅,卢颖洪,周敏.利用PCR介导的同源重组制备V型ATP酶的亚基蛋白VPH1.江苏农业学报, 2017, 33(5):1016-1021. Li SM, Lu YH, Zhou M. Preparation of VPH1 protein of V-ATPase using PCR-mediated homologous recombination. Jiangsu J Agr Sci, 2017, 33(5):1016-1021(in Chinese).
    [19] 柴冉,孙强,邱立友.降落-重叠PCR法四重融合构建平菇同源重组片段.中国生物化学与分子生物学报, 2012, 28(4):375-379. Chai R, Sun Q, Qiu LY. Quadruple DNA fragments fusion using touchdown-overlap extension PCR. Chin J Biochem Mol Biol, 2012, 28(4):375-379(in Chinese).
    [20] Huang C, Guo L, Wang J, et al. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering. Appl Microbiol Biotechnol, 2020, 104(18):7943-7956.
    [21] Lee EC, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001, 73(1):56-65.
    [22] 李鑫,李亚芯,戴建君. Red两步同源重组法在大肠杆菌基因敲除中的应用.中国畜牧兽医, 2017, 44(7):1934-1940. Li X, Li YX, Dai JJ. Usage of two-step red homologous recombination method to knockout the gene of Escherichia coli. China Anim Husb Vet Med, 2017, 44(7):1934-1940(in Chinese).
    [23] Muyrers JP, Zhang Y, Buchholz F, et al. RecE/RecT and Redα/Redβ initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev, 2000, 14(15):1971-1982.
    [24] Zhang Y, Muyrers JP, Rientjes J, et al. Phage annealing proteins promote oligonucleotide-directed mutagenesis in E. coli and mouse ES cells. BMC Mol Biol, 2003, 4(1):1-14.
    [25] Liu, Q, Shen Q, Bian X, et al. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Sci Rep-UK, 2016, 6:34623.
    [26] Marshall Stark W, Boocock M, Olorunniji F, et al. Intermediates in serine recombinase-mediated site-specific recombination. Biochemical Soc T, 2011, 39(2):617-622.
    [27] Grindley ND, Whiteson KL, Rice PA. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75:567-605.
    [28] Krappmann S. Genetic surgery in fungi:employing site-specific recombinases for genome manipulation. Appl Microbiol Biot, 2014, 98(5):1971-1982.
    [29] Landy A. The λ integrase site-specific recombination pathway. Microbiol Spectrum, 2015, 3(2):MDNA3-0051-2014.
    [30] Peredelchuk MY, Bennett GN. A method for construction of E. coli strains with multiple DNA insertions in the chromosome. Gene, 1997, 187(2):231-238.
    [31] Broach JR, Hicks JB. Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell, 1980, 21(2):501-508.
    [32] Sternberg N. Bacteriophage P1 site-specific recombination. Ⅲ. Strand exchange during recombination at lox sites. J Mol Biol, 1981, 150(4):603-608.
    [33] Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. Ⅰ. Recombination between loxP sites. J Mol Biol, 1981, 150(4):467-486.
    [34] Sternberg N, Hamilton D, Hoess R. Bacteriophage P1 site-specific recombination. Ⅱ. Recombination between loxP and the bacterial chromosome. J Mol Biol, 1981, 150(4):487-507.
    [35] Carnoy C, Roten CA. The dif/Xer recombination systems in proteobacteria. PloS One, 2009, 4(9):e6531.
    [36] Li H, Sharp R, Rutherford K, et al. Serine integrase attP binding and specificity. J Mol Biol, 2018, 430(21):4401-4418.
    [37] Olorunniji FJ, McPherson AL, Rosser SJ, et al. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res, 2017, 45(14):8635-8645.
    [38] Sukhija K, Pyne M, Ali S, et al. Developing an extended genomic engineering approach based on recombineering to knock-in heterologous genes to Escherichia coli genome. Mol Biotechnol, 2012, 51(2):109-118.
    [39] Liu LP, Yang X, Zhao XJ, et al. A Lambda red and FLP/FRT-Mediated site-specific recombination system in Komagataeibacter xylinus and its application to enhance the productivity of bacterial cellulose. ACS Synth Biol, 2020, 9(11):3171-3180.
    [40] Blakely G, May G, McCulloch R, et al. Two related recombinases are required for site-specific recombination at dif and cer in E.coli K12. Cell, 1993, 75(2):351-361.
    [41] Le Bourgeois P, Bugarel M, Campo N, et al. The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet, 2007, 3(7):e117.
    [42] Leroux M, Rezoug Z, Szatmari G. The Xer/dif site-specific recombination system of Campylobacter jejuni. Mol Genet Genomics, 2013, 288(10):495-502.
    [43] Castillo F, Benmohamed A, Szatmari G. Xer site specific recombination:double and single recombinase systems. Fron Microbiol, 2017, 8:453.
    [44] Sharan SK, Thomason LC, Kuznetsov SG, et al. Recombineering:a homologous recombination-based method of genetic engineering. Nat Protoc, 2009, 4(2):206-223.
    [45] Kolisnychenko V, Plunkett G 3rd, Herring CD, et al. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4):640-647.
    [46] 葛高顺,张立超,赵昕,等.大肠杆菌基因组基因无痕敲除的优化方法.中国生物工程杂志, 2014, 34(6):68-74. Ge GS, Zhang LC, Zhao X, et al. Optimization of the method for scarless gene knockout in Escherichia coli genome. China Biotechnol, 2014, 34(6):68-74(in Chinese).
    [47] Tischer BK, Von Einem J, Kaufer B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2):191-197.
    [48] Rivero-Müller A, Lajić S, Huhtaniemi I. Assisted large fragment insertion by Red/ET-recombination (ALFIRE)-an alternative and enhanced method for large fragment recombineering. Nucleic Acids Res, 2007, 35(10):e78.
    [49] Kalivoda KA, Steenbergen SM, Vimr ER, et al. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol, 2003, 185(16):4806-4815.
    [50] Hook CD, Samsonov VV, Ublinskaya AA, et al. A novel approach for E.coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion. J Microbiol Meth, 2016, 130:83-91.
    [51] Egger E, Tauer C, Cserjan‑Puschmann M, et al. Fast and antibiotic free genome integration into Escherichia coli chromosome. Sci Rep-UK, 2020, 10(1):16510.
    [52] Strutton B, Jaffé SRP, Pandhal J, et al. Producing a glycosylating Escherichia coli cell factory:the placement of the bacterial oligosaccharyl transferase pglB onto the genome. Biochem Bioph Res Co, 2018, 495(1):686-692.
    [53] Englaender JA, Jones JA, Cress BF, et al. Effect of genomic integration location on heterologous protein expression and metabolic engineering in E.coli. ACS Synth Biol, 2017, 6(4):710-720.
    [54] Yatesa LE, Natarajan A, Li M, et al. Glyco-recoded Escherichia coli:recombineering-based genome editing of native polysaccharide biosynthesis gene clusters. Metab Eng, 2019, 53:59-68.
    [55] Liu L, Li W, Li X, et al. Constructing an efficient salicylate biosynthesis platform by E. coli chromosome integration. J Biotechnol, 2019, 298:5-10.
    [56] Noda S, Shirai T, Mori Y, et al. Engineering a synthetic pathway for maleate in Escherichia coli. Nat Commun, 2017, 8(1):1153.
    [57] 向华.来自细菌的魔剪:2020年诺贝尔化学奖.微生物学通报, 2020, 47(11):3491-3493. Xiang H. Genetic Scissors from Bacteria:the 2020 Nobel Prize in Chemistry. Microbiol China, 2020, 47(11):3491-3493(in Chinese).
    [58] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213):1258096.
    [59] Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31(3):233-239.
    [60] Kirchner M, Schneider S. CRISPR-Cas:from the bacterial adaptive immune system to a versatile tool for genome engineering. Angew Chem Int Edit, 2015, 54(46):13508-13514.
    [61] Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013, 31(9):839-843.
    [62] Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014, 24(1):132-141.
    [63] 张昆,陈景超,李祎,等. CRISPR_Cas9技术在微生物研究中的应用进展.微生物学通报, 2018, 45(2):451-464. Zhang K, Chen JC, Li Y, et al. Application progress of CRISPR/Cas9 technology in microbiological research. Microbiol China, 2018, 45(2):451-464(in Chinese).
    [64] Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010, 79:181-211.
    [65] Chung ME, Yeh IH, Sung LY, et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng, 2017, 114(1):172-183.
    [66] Zhao D, Feng X, Zhu X, et al. CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Sci Rep-UK, 2017, 7(1):16624.
    [67] Su B, Song D, Zhu H. Homology-dependent recombination of large synthetic pathways into E. coli genome via lambda-Red and CRISPR/Cas9 dependent selection methodology. Microbial Cell Factories, 2020, 19(1):108.
    [68] Zhao D, Yuan S, Xiong B, et al. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact, 2016, 15(1):205.
    [69] Pyne ME, Moo-Young M, Chung D, et al. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microb, 2015, 81(15):5103-5114.
    [70] Ronda C, Pedersen LE, Sommer MO, et al. CRMAGE:CRISPR optimized MAGE recombineering. Sci Rep-UK, 2016, 6:19452.
    [71] Feng X, Zhao D, Zhang X, et al. CRISPR/Cas9 assisted multiplex genome editing technique in Escherichia coli. Biotechnol J, 2018, 13(9):e1700604.
    [72] Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603):420-424.
    [73] Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681):464-471.
    [74] Zheng K, Wang Y, Li N, et al. Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun Biol, 2018, 1:32.
    引证文献
引用本文

晁双英,胡学军. 基因编辑技术在大肠杆菌中的应用[J]. 生物工程学报, 2022, 38(4): 1446-1461

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-13
  • 最后修改日期:2021-12-06
  • 在线发布日期: 2022-04-22
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司