基于图论的代谢网络中流通代谢物处理新方法
作者:
基金项目:

国家重点研发计划(2018YFA0900300);天津市合成生物技术创新能力提升行动项目(TSBICIP-PTJS-001,TSBICIP-KJGG-005)


A graph-theory-based method for processing of currency metabolites in metabolic networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    使用图论方法对基因组尺度代谢网络进行途径搜索是目前途径设计中最常用的方法之一。然而,由于流通代谢物(如H+、H2O、CO2和ATP等)的影响,图论搜索得到的途径在生物学上经常是不可行的。虽然前人提出了一些方法对流通代谢物进行处理,但均存在一些问题,目前还没有标准的处理方法。文中基于流通代谢物在反应中作为转移磷酸等功能基团转移载体的特性,提出了一种对流通代谢物成对处理的方法,并将其按照其在功能基团转移中发挥的作用进行优先级排序,以保证每个反应都有对应的代谢物连接,进而通过程序实现自动化处理。与已有其他方法处理结果的比较表明,这种流通代谢物成对排序处理的方法可以排除掉生物学不可行的途径,从而提高途径搜索的准确性,为利用图论方法进行途径设计和可视化提供更好的支撑。

    Abstract:

    Graph-theory-based pathway analysis is a commonly used method for pathway searching in genome-scale metabolic networks.However,such searching often results in many pathways biologically infeasible due to the presence of currency metabolites (e.g.H+,H2O,CO2,ATP etc.).Several methods have been proposed to address the problem but up to now there is no well-recognized methods for processing the currency metabolites.In this study,we proposed a new method based on the function of currency metabolites for transferring of functional groups such as phosphate.We processed most currency metabolites as pairs rather than individual metabolites,and ranked the pairs based on their importance in transferring functional groups,in order to make sure at least one main metabolite link exists for any reaction.The whole process can be done automatically by programming.Comparison with existing approaches indicates that more biologically infeasible pathways were removed by our method and the calculated pathways were more reliable,which may facilitate the graph-theory-based pathway design and visualization.

    参考文献
    [1] 张晨阳,武耀康,徐显皓,等.工业微生物代谢网络模型的研究进展及应用.生物工程学报, 2021, 37(3):860-873. Zhang CY, Wu YK, Xu XH, et al. Current status and future perspectives of metabolic network models of industrial microorganisms. Chin J Biotech, 2021, 37(3):860-873(in Chinese).
    [2] Gu C, Kim GB, Kim WJ, et al. Current status and applications of genome-scale metabolic models. Genome Biol, 2019, 20(1):121.
    [3] Orth JD, Thiele I, Palsson BØ. What is flux balance analysis?Nat Biotechnol, 2010, 28(3):245-248.
    [4] 叶超,徐楠,陈修来,等.应用代谢网络模型解析工业微生物胞内代谢.生物工程学报, 2019, 35(10):1901-1913. Ye C, Xu N, Chen XL, et al. Application of metabolic network model to analyze intracellular metabolism of industrial microorganisms. Chin J Biotech, 2019, 35(10):1901-1913(in Chinese).
    [5] 马红武,陈修来,袁倩倩,等.面向生物合成的代谢工程策略设计.中国科学院院刊, 2018, 33(11):1166-1173. Ma HW, Chen XL, Yuan QQ, et al. Design of metabolic engineering strategies for biosynthesis of valuable products. Bull Chinese Acad Sci, 2018, 33(11):1166-1173(in Chinese).
    [6] 赵欣,杨雪,毛志涛,等.基于酶约束的代谢网络模型研究进展及其应用.生物工程学报, 2019, 35(10):1914-1924. Zhao X, Yang X, Mao ZT, et al. Progress and application of metabolic network model based on enzyme constraints. Chin J Biotech, 2019, 35(10):1914-1924(in Chinese).
    [7] 周静茹,刘鹏,夏建业,等.基于约束的基因组规模代谢网络模型构建方法研究进展.生物工程学报, 2021, 37(5):1526-1540. Zhou JR, Liu P, Xia JY, et al. Advances in the development of constraint-based genome-scale metabolic network models. Chin J Biotech, 2021, 37(5):1526-1540(in Chinese).
    [8] Lacroix V, Cottret L, Thébault P, et al. An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput Biol Bioinform, 2008, 5(4):594-617.
    [9] Ma HW, Zeng AP. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19(11):1423-1430.
    [10] Barabási AL, Oltvai ZN. Network biology:understanding the cell's functional organization. Nat Rev Genet, 2004, 5(2):101-113.
    [11] Croes D, Couche F, Wodak SJ, et al. Metabolic path finding:inferring relevant pathways in biochemical networks. Nucleic Acids Res, 2005, 33(web server issue):W326-W330.
    [12] Abd Algfoor Z, Shahrizal Sunar M, Abdullah A, et al. Identification of metabolic pathways using pathfinding approaches:a systematic review. Brief Funct Genomics, 2017, 16(2):87-98.
    [13] Huang Y, Zhong C, Lin HX, et al. A method for finding metabolic pathways using atomic group tracking. PLoS One, 2017, 12(1):e0168725.
    [14] Faust K, Croes D, van Helden J. Prediction of metabolic pathways from genome-scale metabolic networks. Biosystems, 2011, 105(2):109-121.
    [15] Pavlopoulos GA, Wegener AL, Schneider R. A survey of visualization tools for biological network analysis. BioData Min, 2008, 1:12.
    [16] Hari A, Lobo D. Fluxer:a web application to compute, analyze and visualize genome-scale metabolic flux networks. Nucleic Acids Res, 2020, 48(w1):W427-W435.
    [17] Ma HW, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 2003, 19(2):270-277.
    [18] Jensen PA, Papin JA. MetDraw:automated visualization of genome-scale metabolic network reconstructions and high-throughput data. Bioinformatics, 2014, 30(9):1327-1328.
    [19] Droste P, Miebach S, Niedenführ S, et al. Visualizing multi-omics data in metabolic networks with the software Omix:a case study. Biosystems, 2011, 105(2):154-161.
    [20] Chazalviel M, Frainay C, Poupin N, et al. MetExploreViz:web component for interactive metabolic network visualization. Bioinformatics, 2018, 34(2):312-313.
    [21] Wagner A, Fell DA. The small world inside large metabolic networks. Proc Biol Sci, 2001, 268(1478):1803-1810.
    [22] Rahman SA, Advani P, Schunk R, et al. Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 2005, 21(7):1189-1193.
    [23] Heath AP, Bennett GN, Kavraki LE. Finding metabolic pathways using atom tracking. Bioinformatics, 2010, 26(12):1548-1555.
    [24] Croes D, Couche F, Wodak SJ, et al. Inferring meaningful pathways in weighted metabolic networks. J Mol Biol, 2006, 356(1):222-236.
    [25] Blum T, Kohlbacher O. Using atom mapping rules for an improved detection of relevant routes in weighted metabolic networks. J Comput Biol, 2008, 15(6):565-576.
    [26] Motwalli O, Uludag M, Mijakovic I, et al. PATHcre8:a tool that facilitates the searching for heterologous biosynthetic routes. ACS Synth Biol, 2020, 9(12):3217-3227.
    [27] Fleischmann A, Darsow M, Degtyarenko K, et al. IntEnz, the integrated relational enzyme database. Nucleic Acids Res, 2004, 32(database issue):D434-D437.
    [28] Morgat A, Axelsen KB, Lombardot T, et al. Updates in Rhea-a manually curated resource of biochemical reactions. Nucleic Acids Res, 2015, 43(database issue):D459-D464.
    [29] Norsigian CJ, Pusarla N, McConn JL, et al. BiGG models 2020:multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res, 2020, 48(database issue):D402-D406.
    [30] Seaver SMD, Liu F, Zhang Q, et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res, 2021, 49(database issue):D575-D588.
    [31] Kanehisa M, Furumichi M, Sato Y, et al. KEGG:integrating viruses and cellular organisms. Nucleic Acids Res, 2021, 49(database issue):D545-D551.
    [32] Monk JM, Lloyd CJ, Brunk E, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol, 2017, 35(10):904-908.
    [33] Hucka M, Finney A, Bornstein BJ, et al. Evolving a Lingua Franca and associated software infrastructure for computational systems biology:the systems biology markup language (SBML) project. Syst Biol (Stevenage), 2004, 1(1):41-53.
    [34] Ebrahim A, Lerman JA, Palsson BO, et al. COBRApy:COnstraints-based reconstruction and analysis for Python. BMC Syst Biol, 2013, 7:74.
    [35] Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11):2498-2504.
    [36] Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res, 2018, 46(database issue):D633-D639.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高雅杰,袁倩倩,杨雪,毛志涛,余文童,刘浩,Igor Goryanin,马红武. 基于图论的代谢网络中流通代谢物处理新方法[J]. 生物工程学报, 2022, 38(4): 1554-1564

复制
分享
文章指标
  • 点击次数:388
  • 下载次数: 1145
  • HTML阅读次数: 1428
  • 引用次数: 0
历史
  • 收稿日期:2021-06-01
  • 最后修改日期:2021-08-27
  • 在线发布日期: 2022-04-22
文章二维码
您是第5990806位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司