受体介导的鳞翅目昆虫对Bt毒素抗性机制进展
作者:
基金项目:

湖北省自然科学基金(2020CFB145);国家自然科学基金(32102289);湖北省教育厅科学技术研究项目(B2021289)


Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [88]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    苏云金芽孢杆菌作为一种对人畜安全、环境友好型绿色杀虫剂在全球被广泛使用。Bt毒素与昆虫中肠上特定毒素受体结合并发挥作用,形成毒素穿孔导致昆虫死亡是其重要的杀虫机制之一,靶标害虫对Bt毒素产生抗性是制约转Bt作物长期有效种植和Bt毒素持续使用的重要因素。文中从鳞翅目昆虫中肠细胞Bt毒素重要受体的研究阐述昆虫对Bt的抗性机制,为Bt抗性机制的深入研究和对害虫的防控与治理提供了一定的理论参考。

    Abstract:

    Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.

    参考文献
    [1] Palma L, Muñoz D, Berry C, et al. Bacillus thuringiensis toxins:an overview of their biocidal activity. Toxins, 2014, 6(12):3296-3325.
    [2] Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol, 2021, 66:121-140.
    [3] Chakrabarty S, Jin MH, Wu C, et al. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. Pest Manag Sci, 2020, 76(5):1612-1617.
    [4] Ben Hamadou-Charfi D, Boukedi H, Abdelkefi-Mesrati L, et al. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J Invertebr Pathol, 2013, 114(2):139-143.
    [5] Bravo A, Soberón M. How to cope with insect resistance to Bt toxins? Trends Biotechnol, 2008, 26(10):573-579.
    [6] Xiao YT, Wu KM. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1767):20180316.
    [7] Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49(4):423-435.
    [8] Gómez I, Sánchez J, Miranda R, et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett, 2002, 513(2/3):242-246.
    [9] Bravo A, Gómez I, Conde J, et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta, 2004, 1667(1):38-46.
    [10] Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J Invertebr Pathol, 2006, 92(3):166-171.
    [11] Arenas I, Bravo A, Soberón M, et al. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem, 2010, 285(17):12497-12503.
    [12] Fabrick JA, Mathew LG, LeRoy DM, et al. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Manag Sci, 2020, 76(1):67-74.
    [13] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev, 2013, 37(1):3-22.
    [14] Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis:a story of a successful bioinsecticide. Insect Biochem Mol Biol, 2011, 41(7):423-431.
    [15] Zhang X, Candas M, Griko NB, et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. PNAS, 2006, 103(26):9897-9902.
    [16] Tanaka S, Miyamoto K, Noda H, et al. The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis. FEBS J, 2013, 280(8):1782-1794.
    [17] Zhang DD, Jin MH, Yang YC, et al. Synergistic resistance of Helicoverpa armigera to Bt toxins linked to cadherin and ABC transporters mutations. Insect Biochem Mol Biol, 2021, 137:103635.
    [18] Gómez I, Rodríguez-Chamorro DE, Flores-Ramírez G, et al. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is a functional receptor of the Bacillus thuringiensis Cry1Ca toxin. Appl Environ Microbiol, 2018, 84(17):e01089-e01018.
    [19] Griffitts JS, Haslam SM, Yang TL, et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307(5711):922-925.
    [20] Jiang K, Hou XY, Han L, et al. Fibroblast growth factor receptor, a novel receptor for vegetative insecticidal protein Vip3Aa. Toxins, 2018, 10(12):546.
    [21] Jiang K, Hou XY, Tan TT, et al. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis. PLoS Pathog, 2018, 14(10):e1007347.
    [22] Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda), 2007, 22:122-130.
    [23] Linton KJ, Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol, 1998, 28(1):5-13.
    [24] Orelle C, Ayvaz T, Everly RM, et al. Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. PNAS, 2008, 105(35):12837-12842.
    [25] Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol, 2007, 52:231-253.
    [26] Buss DS, Callaghan A. Interaction of pesticides with p-glycoprotein and other ABC proteins:a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic Biochem Physiol, 2008, 90(3):141-153.
    [27] Gahan LJ, Pauchet Y, Vogel H, et al. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet, 2010, 6(12):e1001248.
    [28] Atsumi S, Miyamoto K, Yamamoto K, et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. PNAS, 2012, 109(25):E1591-E1598.
    [29] Park Y, González-Martínez RM, Navarro-Cerrillo G, et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol, 2014, 12:46.
    [30] Chen ZW, He F, Xiao YT, et al. Endogenous expression of a Bt toxin receptor in the Cry1Ac-susceptible insect cell line and its synergistic effect with cadherin on cytotoxicity of activated Cry1Ac. Insect Biochem Mol Biol, 2015, 59:1-17.
    [31] Stevens T, Song SS, Bruning JB, et al. Expressing a moth abcc2 gene in transgenic Drosophila causes susceptibility to Bt Cry1Ac without requiring a cadherin-like protein receptor. Insect Biochem Mol Biol, 2017, 80:61-70.
    [32] Tanaka S, Endo H, Adegawa S, et al. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin. Insect Biochem Mol Biol, 2017, 91:44-54.
    [33] Wang J, Ma HH, Zhao S, et al. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog, 2020, 16(3):e1008427.
    [34] Liu LL, Chen ZW, Yang YC, et al. A single amino acid polymorphism in ABCC2 loop 1 is responsible for differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species. Insect Biochem Mol Biol, 2018, 100:59-65.
    [35] Zhu B, Sun X, Nie XM, et al. microRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Insect Biochem Mol Biol, 2020, 117:103283.
    [36] Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch Insect Biochem Physiol, 2020, 104(2):e21673.
    [37] Hao J, Gao MJ, Hu XD, et al. Synergistic selection of a Helicoverpa armigera cadherin fragment with Cry1Ac in different cells and insects. Int J Biol Macromol, 2020, 164:3667-3675.
    [38] Xie RY, Zhuang MB, Ross LS, et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J Biol Chem, 2005, 280(9):8416-8425.
    [39] Wang J, Zhang HN, Wang HD, et al. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system. Insect Biochem Mol Biol, 2016, 76:11-17.
    [40] Wang L, Ma YM, Guo XQ, et al. Pink bollworm resistance to Bt toxin Cry1Ac associated with an insertion in cadherin exon 20. Toxins, 2019, 11(4):186.
    [41] Xiao YT, Dai Q, Hu RQ, et al. A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm. J Biol Chem, 2017, 292(7):2933-2943.
    [42] Wang L, Wang JT, Ma YM, et al. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China. Sci Rep, 2019, 9(1):7479.
    [43] Bretschneider A, Heckel DG, Pauchet Y. Three toxins, two receptors, one mechanism:mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochem Mol Biol, 2016, 76:109-117.
    [44] Endo H, Adegawa S, Kikuta S, et al. The intracellular region of silkworm cadherin-like protein is not necessary to mediate the toxicity of Bacillus thuringiensis Cry1Aa and Cry1Ab toxins. Insect Biochem Mol Biol, 2018, 94:36-41.
    [45] Zhang JF, Jin MH, Yang YC, et al. The cadherin protein is not involved in susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa toxins in Spodoptera frugiperda. Toxins, 2020, 12(6):375.
    [46] Lorence A, Darszon A, Bravo A. Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes. FEBS Lett, 1997, 414(2):303-307.
    [47] Laustsen PG, Vang S, Kristensen T. Mutational analysis of the active site of human insulin-regulated aminopeptidase. Eur J Biochem, 2001, 268(1):98-104.
    [48] Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev, 2007, 71(2):255-281.
    [49] Gill M, Ellar D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol Biol, 2002, 11(6):619-625.
    [50] Qiu L, Cui SH, Liu L, et al. Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua. Sci Rep, 2017, 7:45007.
    [51] Stephens E, Sugars J, Maslen SL, et al. The N-linked oligosaccharides of aminopeptidase N from Manduca sexta:site localization and identification of novel N-glycan structures. Eur J Biochem, 2004, 271(21):4241-4258.
    [52] Zhang SP, Cheng HM, Gao YL, et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol, 2009, 39(7):421-429.
    [53] Derbyshire DJ, Ellar DJ, Li J. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr D Biol Cryst, 2001, 57(12):1938-1944.
    [54] Wei JZ, Zhang M, Liang GM, et al. APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Sci Rep, 2016, 6:19179.
    [55] Pan ZZ, Xu L, Liu B, et al. PxAPN5 serves as a functional receptor of Cry2Ab in Plutella xylostella (L.) and its binding domain analysis. Int J Biol Macromol, 2017, 105(Pt 1):516-521.
    [56] Zhang YK, Zhao D, Yan XP, et al. Identification and characterization of Hyphantria cunea aminopeptidase N as a binding protein of Bacillus thuringiensis Cry1Ab35 toxin. Int J Mol Sci, 2017, 18(12):2575.
    [57] Upadhyay SK, Singh PK. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnol Lett, 2011, 33(10):2027-2036.
    [58] Wei JZ, Yang S, Chen L, et al. Transcriptomic responses to different Cry1Ac selection stresses in Helicoverpa armigera. Front Physiol, 2018, 9:1653.
    [59] Vimalraj S. Alkaline phosphatase:structure, expression and its function in bone mineralization. Gene, 2020, 754:144855.
    [60] English LH, Readdy TL. Delta endotoxin inhibits a phosphatase in midgut epithelial membranes of Heliothis virescens. Insect Biochem, 1989, 19(2):145-152.
    [61] Bravo A, Miranda R, Gómez I, et al. Pore formation activity of Cry1Ab toxin from Bacillus thuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cell microvilli. Biochim Biophys Acta, 2002, 1562(1/2):63-69.
    [62] Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem, 2004, 271(15):3127-3135.
    [63] Guo ZJ, Kang S, Chen DF, et al. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet, 2015, 11(4):e1005124.
    [64] GUO L, Cheng ZQ, Qin JY, et al. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet, 2022, 18(2):e1010037.
    [65] Chen WB, Liu CX, Xiao YT, et al. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera. PLoS One, 2015, 10(4):e0126288.
    [66] Yuan XD, Zhao M, Wei JZ, et al. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. J Insect Physiol, 2017, 98:101-107.
    [67] Tanaka S, Endo H, Adegawa S, et al. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. FEBS J, 2016, 283(24):4474-4490.
    [68] Ma YM, Zhang JF, Xiao YT, et al. The cadherin Cry1Ac binding-region is necessary for the cooperative effect with ABCC2 transporter enhancing insecticidal activity of Bacillus thuringiensis Cry1Ac toxin. Toxins, 2019, 11(9):538.
    [69] Ocelotl J, Sánchez J, Arroyo R, et al. Binding and oligomerization of modified and native Bt toxins in resistant and susceptible pink bollworm. PLoS One, 2015, 10(12):e0144086.
    [70] Ren XL, Jiang WL, Ma YJ, et al. The Spodoptera exigua (Lepidoptera:Noctuidae) ABCC2 mediates Cry1Ac cytotoxicity and, in conjunction with cadherin, contributes to enhance Cry1Ca toxicity in Sf9 cells. J Econ Entomol, 2016, 109(6):2281-2289.
    [71] Soberón M, Portugal L, Garcia-Gómez BI, et al. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol, 2018, 93:66-78.
    [72] Tabashnik BE, Brévault T, Carrière Y. Insect resistance to Bt crops:lessons from the first billion acres. Nat Biotechnol, 2013, 31(6):510-521.
    [73] Farias JR, Andow DA, Horikoshi RJ, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera:Noctuidae) in Brazil. Crop Prot, 2014, 64:150-158.
    [74] Oppert B, Kramer KJ, Beeman RW, et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem, 1997, 272(38):23473-23476.
    [75] Liu CX, Xiao YT, Li XC, et al. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm. Sci Rep, 2014, 4:7219.
    [76] Fabrick JA, Ponnuraj J, Singh A, et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India. PLoS One, 2014, 9(5):e97900.
    [77] Melo AL, Soccol VT, Soccol CR. Bacillus thuringiensis:mechanism of action, resistance, and new applications:a review. Crit Rev Biotechnol, 2016, 36(2):317-326.
    [78] Li HR, Oppert B, Higgins RA, et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and-susceptible Ostrinia nubilalis (Lepidoptera:Crambidae). Insect Biochem Mol Biol, 2004, 34(8):753-762.
    [79] Singh G, Sachdev B, Sharma N, et al. Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Appl Environ Microbiol, 2010, 76(21):7202-7209.
    [80] Wang G, Wu K, Liang G, et al. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region. Sci China C Life Sci, 2005, 48(4):346-356.
    [81] Flores-Escobar B, Rodríguez-Magadan H, Bravo A, et al. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Appl Environ Microbiol, 2013, 79(15):4543-4550.
    [82] Portugal L, Gringorten JL, Caputo GF, et al. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1. Peptides, 2014, 53:292-299.
    [83] Portugal L, Muñóz-Garay C, Martínez de Castro DL, et al. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Insect Biochem Mol Biol, 2017, 80:21-31.
    [84] Yang X, Deng S, Wei XG, et al. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. PNAS, 2020, 117(19):10246-10253.
    [85] Tiewsiri K, Wang P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. PNAS, 2011, 108(34):14037-14042.
    [86] Jakka SRK, Gong L, Hasler J, et al. Field-evolved mode 1 resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut alkaline phosphatase expression. Appl Environ Microbiol, 2015, 82(4):1023-1034.
    [87] Li JH, Ma YM, Yuan WL, et al. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes. Insect Biochem Mol Biol, 2017, 88:1-11.
    [88] Wei W, Pan S, Ma YM, et al. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. Insect Biochem Mol Biol, 2020, 118:103306.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘磊磊,徐培文,刘凯于,魏巍,常忠燊,程大辉. 受体介导的鳞翅目昆虫对Bt毒素抗性机制进展[J]. 生物工程学报, 2022, 38(5): 1809-1823

复制
分享
文章指标
  • 点击次数:530
  • 下载次数: 1596
  • HTML阅读次数: 1212
  • 引用次数: 0
历史
  • 收稿日期:2021-11-11
  • 在线发布日期: 2022-05-18
文章二维码
您是第5893373位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司