基于肠脑轴传播α-突触核蛋白诱发帕金森病的研究进展
作者:
基金项目:

国家自然科学基金(31960120);云南省科技厅项目(202105AC160041)


Advances in Parkinson's disease induced by α-synuclein transmitted through the gut-brain axis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    帕金森病(Parkinson’s disease,PD)是最常见的神经退行性疾病,随着我国人口老龄化加剧,PD病人的增加将造成严重的经济和医疗负担。PD的典型病理特征是黑质致密部多巴胺能神经元的死亡以及多巴胺能神经元中异常聚集的淀粉样蛋白α-突触核蛋白(α-synuclein,α-Syn)形成病理包涵体即路易小体(Lewy body)。研究发现路易小体不仅存在中枢神经系统中,也同样存在于外周神经系统。肠道内丰富的肠神经系统被称为“第二大脑”。肠脑轴的发现也证明α-Syn能在大脑和肠道进行双向传输。肠道中也存在着庞大的微生物群,这些微生物参与病理性α-Syn的形成和传输。因此文中基于肠脑轴探讨α-Syn在大脑和肠道的双向传输关系,尝试探索肠道微生物群对α-Syn异常聚集的影响。结合目前PD病人的研究和动物模型尤其是非人灵长类实验的研究,希望为PD疾病的筛查和诊断提供参考。

    Abstract:

    Parkinson's disease (PD) is the most common neurodegenerative disease. Along with the population aging of China, the increase of PD patients in China will result in serious economic and medical burdens. The typical pathological characteristics of PD are the death of dopaminergic neurons in the substantia nigra compacta and the pathological inclusion bodies formed by abnormally aggregated amyloid alpha-synuclein (α-Syn) in dopaminergic neurons, which is also named as Lewy body. Studies have found that the Lewy body exists not only in the central nervous system, but also in the peripheral nervous system. The abundant enteric nervous system in the gut is called the "second brain". The discovery of the gut-brain axis also proves that α-Syn can be transmitted bilaterally between the brain and the gut. The gut microbiota was shown to be involved in the formation and transmission of pathological α-Syn. Therefore, this article summarized the bilateral transmission relationship of α-Syn in the brain and the gut and illustrated the influence of gut microbiota on the abnormal aggregation of α-Syn. Combined with the current progresses on PD patients and animal models especially the non-human primate experiments, this article aimed to provide a reference for the screening and diagnosis of PD.

    参考文献
    [1] Ho MW, Chien SH, Lu MK, et al. Impairments in face discrimination and emotion recognition are related to aging and cognitive dysfunctions in Parkinson's disease with dementia. Sci Rep, 2020, 10(1):4367.
    [2] 许艳, 朱彤, 胡喆, 等. 渐进式康复干预结合经颅磁治疗对帕金森病患者睡眠障碍及负性情绪的影响. 齐鲁护理杂志, 2021, 27(19):95-98. Xu Y, Zhu T, Hu Z, et al. Effect of progressive rehabilitation intervention combined with transcranial magnetic therapy on sleep disorders and negative emotions in patients with Parkinson's disease. J Qilu Nurs, 2021, 27(19):95-98(in Chinese).
    [3] 武璐丽, 李婕, 由金玲, 等. 1990-2019年北京市和上海市帕金森病的疾病负担分析. 疾病监测, 2021, 1-7. Wu LL, Li J, You JL, et al. Analysis of the disease burden of Parkinson's disease in Beijing and Shanghai from 1990 to 2019. Disease Surveillance, 2021, 1-7(in Chinese).
    [4] Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol, 2020, 27(1):27-42.
    [5] Masato A, Plotegher N, Boassa D, et al. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener, 2019, 14(1):35.
    [6] Taguchi T, Ikuno M, Yamakado H, et al. Animal model for prodromal Parkinson's disease. Int J Mol Sci, 2020, 21(6):1961.
    [7] Jankovic J, Tan EK. Parkinson's disease:etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry, 2020, 91(8):795-808.
    [8] Menozzi E, Macnaughtan J, Schapira AHV. The gut-brain axis and Parkinson disease:clinical and pathogenetic relevance. Ann Med, 2021, 53(1):611-625.
    [9] Cryan JF, O'Riordan KJ, Sandhu K, et al. The gut microbiome in neurological disorders. Lancet Neurol, 2020, 19(2):179-194.
    [10] Chapelet G, Leclair-Visonneau L, Clairembault T, et al. Can the gut be the missing piece in uncovering PD pathogenesis? Parkinsonism Relat Disord, 2019, 59:26-31.
    [11] Malpartida AB, Williamson M, Narendra DP, et al. Mitochondrial dysfunction and mitophagy in Parkinson's disease:from mechanism to therapy. Trends Biochem Sci, 2021, 46(4):329-343.
    [12] Barazzuol L, Giamogante F, Brini M, et al. PINK1/Parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson's disease. Int J Mol Sci, 2020, 21(5):1772.
    [13] Sliter DA, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature, 2018, 561(7722):258-262.
    [14] Nguyen M, Wong YC, Ysselstein D, et al. Mitochondrial, and lysosomal dysfunction in Parkinson's disease. Trends Neurosci, 2019, 42(2):140-149.
    [15] Pajares M, I Rojo A, Manda G, et al. Inflammation in Parkinson's disease:mechanisms and therapeutic implications. Cells, 2020, 9(7):1687.
    [16] Chohan H, Senkevich K, Patel RK, et al. Type 2 diabetes as a determinant of Parkinson's disease risk and progression. Mov Disord, 2021, 36(6):1420-1429.
    [17] Cheong JLY, De Pablo-Fernandez E, Foltynie T, et al. The association between type 2 diabetes mellitus and Parkinson's disease. J Parkinsons Dis, 2020, 10(3):775-789.
    [18] Burré J, Sharma M, Südhof TC. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med, 2018, 8(3):a024091.
    [19] Koprich JB, Kalia LV, Brotchie JM, et al. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci, 2017, 18(9):515-529.
    [20] Du XY, Xie XX, Liu RT. The role of α-synuclein oligomers in Parkinson's disease. Int J Mol Sci, 2020, 21(22):8645.
    [21] Mavroeidi P, Xilouri M. Neurons and glia interplay in α-synucleinopathies. Int J Mol Sci, 2021, 22(9):4994.
    [22] Brás IC, Dominguez-Meijide A, Gerhardt E, et al. Synucleinopathies:where we are and where we need to go. J Neurochem, 2020, 153(4):433-454.
    [23] Reed X, Bandrés-Ciga S, Blauwendraat C, et al. The role of monogenic genes in idiopathic Parkinson's disease. Neurobiol Dis, 2019, 124:230-239.
    [24] Spillantini MG, Goedert M. Neurodegeneration and the ordered assembly of α-synuclein. Cell Tissue Res, 2018, 373(1):137-148.
    [25] Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med, 2020, 36(1):1-12.
    [26] Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res, 2018, 373(1):21-37.
    [27] Borsche M, Pereira SL, Klein C, et al. Mitochondria and Parkinson's disease:clinical, molecular, and translational aspects. J Parkinsons Dis, 2021, 11(1):45-60.
    [28] Koga S, Sekiya H, Kondru N, et al. Neuropathology and molecular diagnosis of synucleinopathies. Mol Neurodegener, 2021, 16(1):83.
    [29] Schmidt MF, Gan ZY, Komander D, et al. Ubiquitin signalling in neurodegeneration:mechanisms and therapeutic opportunities. Cell Death Differ, 2021, 28(2):570-590.
    [30] Shan FY, Fung KM, Zieneldien T, et al. Examining the toxicity of α-synuclein in neurodegenerative disorders. Life (Basel), 2021, 11(11):1126.
    [31] Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease. Mov Disord, 2012, 27(6):709-715.
    [32] Sánchez-Ferro Á, Rábano A, Catalán MJ, et al. In vivo gastric detection of α-synuclein inclusions in Parkinson's disease. Mov Disord, 2015, 30(4):517-524.
    [33] Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease. Neuron, 2019, 103(4):627-641.e7.
    [34] Lerner A, Bagic A. Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord, 2008, 23(8):1076-1084.
    [35] Phillips RJ, Walter GC, Wilder SL, et al. Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals:autonomic pathway implicated in Parkinson's disease? Neuroscience, 2008, 153(3):733-750.
    [36] Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, et al. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol, 2016, 79(6):940-949.
    [37] Ma LY, Liu GL, Wang DX, et al. Alpha-synuclein in peripheral tissues in Parkinson's disease. ACS Chem Neurosci, 2019, 10(2):812-823.
    [38] Tsukita K, Sakamaki-Tsukita H, Tanaka K, et al. Value of in vivo α-synuclein deposits in Parkinson's disease:a systematic review and meta-analysis. Mov Disord, 2019, 34(10):1452-1463.
    [39] Van Den Berge N, Ferreira N, Gram H, et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol, 2019, 138(4):535-550.
    [40] Wang XJ, Ma MM, Zhou LB, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun, 2020, 11:934.
    [41] Smith LM, Parr-Brownlie LC. A neuroscience perspective of the gut theory of Parkinson's disease. Eur J Neurosci, 2019, 49(6):817-823.
    [42] Lionnet A, Leclair-Visonneau L, Neunlist M, et al. Does Parkinson's disease start in the gut? Acta Neuropathol, 2018, 135(1):1-12.
    [43] Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci, 2018, 12:49.
    [44] Boertien JM, Pereira PAB, Aho VTE, et al. Increasing comparability and utility of gut microbiome studies in Parkinson's disease:a systematic review. J Parkinsons Dis, 2019, 9(s2):S297-S312.
    [45] Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell, 2016, 167(6):1469-1480.e12.
    [46] Barichella M, Severgnini M, Cilia R, et al. Unraveling gut microbiota in Parkinson's disease and atypical Parkinsonism. Mov Disord, 2019, 34(3):396-405.
    [47] Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord, 2018, 33(1):88-98.
    [48] Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 2016, 32:66-72.
    [49] Yan YP, Ren SC, Duan YC, et al. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. Npj Biofilms Microbiomes, 2021, 7(1):1-9.
    [50] Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol, 2014, 128(6):805-820.
    [51] Challis C, Hori A, Sampson TR, et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci, 2020, 23(3):327-336.
    [52] Uemura N, Yagi H, Uemura MT, et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener, 2018, 13(1):21.
    [53] Liu BJ, Fang F, Pedersen NL, et al. Vagotomy and Parkinson disease:a Swedish register-based matched-cohort study. Neurology, 2017, 88(21):1996-2002.
    [54] Arotcarena ML, Dovero S, Prigent A, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 2020, 143(5):1462-1475.
    [55] Chandra R, Hiniker A, Kuo YM, et al. α-synuclein in gut endocrine cells and its implications for Parkinson's disease. JCI Insight, 2017, 2(12):92295.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周佳文,王正波. 基于肠脑轴传播α-突触核蛋白诱发帕金森病的研究进展[J]. 生物工程学报, 2022, 38(6): 2120-2127

复制
分享
文章指标
  • 点击次数:382
  • 下载次数: 1495
  • HTML阅读次数: 1540
  • 引用次数: 0
历史
  • 收稿日期:2021-11-04
  • 在线发布日期: 2022-06-28
  • 出版日期: 2022-06-25
文章二维码
您是第6020376位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司