代谢工程改造大肠杆菌合成丙二酸
作者:
基金项目:

国家重点研发计划(2019YFA0905502);国家自然科学基金(21877053);江苏省自然科学基金(BK20181345)


Metabolic engineering of Escherichia coli for production of malonic acid
Author:
  • FU Wenxuan

    FU Wenxuan

    National Engineering for Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Shiyun

    LI Shiyun

    National Engineering for Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Yunying

    ZHAO Yunying

    National Engineering for Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DENG Yu

    DENG Yu

    National Engineering for Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneIpyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppcaspC、pa0132yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。

    Abstract:

    Malonic acid is an important dicarboxylic acid, which can be widely used in the fields of chemical industry, medicine and food. In this study, a recombinant Escherichia coli strain BL21(TPP)was constructed to synthesize malonate through overexpressing six genes of ppc, aspC, panD, pa0132,yneI and pyc. Under shake flask fermentation conditons, strain BL21(TPP) produced 0.61 g/L malonic acid. In a 5 L fermentor, the production of malonic acid reached 3.32 g/L by using an intermittent feeding strategy. Next, a recombinant strain BL21(SCR) was constructed by fusional expression of ppc and aspC, as well as pa0132 and yneI, respectively. As a result, the production of malonic acid increased to 0.83 g/L at the shake flask level, which was a 36% increase over the starting strain BL21(TPP).Finally, the highest malonate production reached 5.61 g/L in a 5 L fermentor, which was a 69% increase over the starting strain BL21(TPP). Production of malonic acid by metabolically engineered E. coli provides a basis for further optimization, and may also serve as a reference for the biosynthesis of other dicarboxylic acids.

    参考文献
    [1] Werpy T,Petersen G.Top Value Added Chemicals from Biomass:volumeⅠ-Results of Screening for Potential Candidates from Sugars and Synthesis Gas[R].OSTI,2004.
    [2] Davydov VV,Repetskaya AV.Protective effect of malonic acid in hypoxic hypoxia.Fiziol Zh,1991,37(5):111-112.
    [3] Manning DT,Cappy JJ,See RM,et al.Use of malonic acid derivative compounds for retarding plant growth:US,5292937.1994-03-08.
    [4] 张红梅,魏文珑,常宏宏.阳离子交换树脂催化水解法制备丙二酸工艺的研究.应用化工,2007,36(7):653-655.Zhang HM,Wei WL,Chang HH.Study on the preparation process of malonic acid catalyzing by cation exchange resin.Appl Chem Ind,2007,36(7):653-655(in Chinese).
    [5] Api AM,Belsito D,Botelho D,et al.RIFM fragrance ingredient safety assessment,diethyl malonate,CASRegistry Number 105-53-3.Food Chem Toxicol,2018,122(Suppl 1):S267-S274.
    [6] Kasumov T,Brunengraber H.An improved procedure for the synthesis of labelled fatty acids utilizing diethyl malonate.J Label Compd Radiopharm,2006,49(2):171-176.
    [7] Lei H,Yin YW,Luo BK,et al.Preparation method of malonic acid and its ester:CN,1410409.2003-04-16.
    [8] Song CW,Kim JW,Cho IJ,et al.Metabolic engineering of Escherichia coli for the production of3-hydroxypropionic acid and malonic acid throughβ-alanine route.ACS Synth Biol,2016,5(11):1256-1263.
    [9] Chae TU,Ahn JH,Ko YS,et al.Metabolic engineering for the production of dicarboxylic acids and diamines.Metab Eng,2020,58:2-16.
    [10] Piao XY,Wang L,Lin BX,et al.Metabolic engineering of Escherichia coli for production of L-aspartate and its derivativeβ-alanine with high stoichiometric yield.Metab Eng,2019,54:244-254.
    [11] Orencio-Trejo M,Utrilla J,Fernández-Sandoval MT,et al.Engineering the Escherichia coli fermentative metabolism.Adv Biochem Eng Biotechnol,2010,121:71-107.
    [12] 黄子亮,张翀,吴希,等.融合酶的设计和应用研究进展,生物工程学报,2012,28(4):393-409.Huang ZL,Zhang C,Wu X,et al.Recent progress in fusion enzyme design and applications.Chin J Biotech,2012,28(4):393-409(in Chinese).
    [13] Tippmann S,Anfelt J,David F,et al.Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae.ACS Synth Biol,2017,6(1):19-28.
    [14] Dueber JE,Wu GC,Malmirchegini GR,et al.Synthetic protein scaffolds provide modular control over metabolic flux.Nat Biotechnol,2009,27(8):753-759.
    [15] Song CW,Kim DI,Choi S,et al.Metabolic engineering of Escherichia coli for the production of fumaric acid.Biotechnol Bioeng,2013,110(7):2025-2034.
    [16] Zhang Y,Dai XF,Jin HN,et al.The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei.J Dairy Sci,2021,104(4):4023-4032.
    [17] 程立坤,赵春光,黄静,等.葡萄糖浓度对大肠杆菌发酵L-色氨酸的影响.食品与发酵工业,2010,36(3):5-9.Cheng LK,Zhao CG,Huang J,et al.Effect of glucose concentration on L-tryptophan fermentation by Escherichia coli.Food Ferment Ind,2010,36(3):5-9(in Chinese).
    [18] 刘辉,赵忠盖.一种基于滞后检测值的残糖浓度模糊控制.计算机与应用化学,2016,33(2):191-196.Liu H,Zhao ZG.A fuzzy controller for residual sugar concentration based on delayed measurements.Comput Appl Chem,2016,33(2):191-196(in Chinese).
    [19] Caldwell TP,Synoground BF,Harcum SW.Method for high-efficiency fed-batch cultures of recombinant Escherichia coli.Methods Enzymol,2021,659:189-217.
    [20] Whiffin VS,Cooney MJ,Cord-Ruwisch R.Online detection of feed demand in high cell density cultures of Escherichia coli by measurement of changes in dissolved oxygen transients in complex media.Biotechnol Bioeng,2004,85(4):422-433.
    [21] 迟雷.基于过程控制优化的重组大肠杆菌高密度发酵研究[D].西安:西北大学,2011.Chi L.Study on high celldensity cultivation in recombinant Escherichia coli based on optimization of process control[D].Xi'an:Northwest University,2011(in Chinese).
    [22] Zhang S,Wei ZM,Zhao MY,et al.Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting.Bioresour Technol,2020,318:124075.
    [23] 董浩浩,李静,杨国忠.丙二酸合成工艺研究进展.山东化工,2015,44(20):49-51.Dong HH,Li J,Yang GZ.Progress of synthesis of malonic acid.Shandong Chem Ind,2015,44(20):49-51(in Chinese).
    [24] Talfournier F,Stines-Chaumeil C,Branlant G.Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis.J Biol Chem,2011,286(25):21971-21981.
    [25] Popov KM,Kedishvili NY,Harris RA.Coenzyme A-and NADH-dependent esterase activity of methylmalonate semialdehyde dehydrogenase.Biochim Biophys Acta,1992,1119(1):69-73.
    引证文献
引用本文

付雯宣,李诗韵,赵运英,邓禹. 代谢工程改造大肠杆菌合成丙二酸[J]. 生物工程学报, 2022, 38(7): 2566-2580

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-29
  • 在线发布日期: 2022-07-25
文章二维码
您是第6075793位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司