植物适应酸铝胁迫机理的研究进展
作者:
基金项目:

黑龙江省自然科学基金优秀青年基金(YQ2019C005)


Advances in the mechanism of plant adaptation to acid aluminum stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    酸铝胁迫是限制植物正常生长发育的重要非生物胁迫因子,严重制约了我国酸性土壤地区的农业生产水平。植物抵御酸铝胁迫的形式复杂多样,如分泌有机酸、提高根际pH、分泌黏液、细胞壁对Al3+的固定、有机酸对细胞溶质中Al3+的螯合与液泡区隔化等。现有研究多集中于常规生理特征分析,缺乏深入的分子生物学解析。基于此,本文对国内外植物适应酸铝胁迫机理的相关研究进行了归纳和总结,从酸铝胁迫对植物生长与生理代谢的影响、植物适应酸铝胁迫最主要的两种生理机制(Al排除机制、Al耐受机制)以及分子水平上调控相关耐铝基因进行了综述。最后针对现有研究的不足提出了展望,以期为深入揭示植物适应酸铝胁迫的机理以及挖掘适于酸土生长的优质作物资源提供理论依据。

    Abstract:

    The aluminum stress in acidic soil areas of China is an important abiotic stress factor that hampers the normal growth and development of plants and seriously affects the agricultural yield. The forms of plant resistance to aluminum stress are complex and diverse, which include secretion of organic acids, increase of rhizosphere pH, secretion of mucus, cell wall fixation of Al3+, organic acid chelation of Al3+ in cell solute, and vacuolar area isolation. Most of studies focus on analyzing conventional physiological characteristics, but in-depth molecular biological analyses are lacking. This review summarizes the mechanisms how plants adapt to acidic aluminum stress. This includes the effect of acid aluminum stress on plant growth and physiological metabolism, the two main physiological mechanisms of plant adaptation to acid aluminum stress (aluminum exclusion mechanism, aluminum tolerance mechanism), and the aluminum resistance related genes. Finally, this paper puts forward some prospects for further revealing the mechanism of plant adaptation to acid aluminum stress and excavating high-quality crops suitable for cultivation in acidic soils.

    参考文献
    [1] Huynh VB, Repellin A, Zuily-Fodil Y, et al.Aluminum stress response in rice:effects on membrane lipid composition and expression of lipid biosynthesis genes.Physiol Plant, 2012, 146(3):272-284.
    [2] 刘颖.浅析黑龙江省农田黑土酸化的原因及对策.黑龙江农业科学, 2010(5):49-52.Liu Y.Analysis on the reason and the countermeasures of black soil acidification in Heilongjiang province.Heilongjiang Agric Sci, 2010(5):49-52(in Chinese).
    [3] Zhang X, Long Y, Huang JJ, et al.Molecular mechanisms for coping with Al toxicity in plants.Int J Mol Sci, 2019, 20(7):1551.
    [4] Liu CJ, Liu YJ, Wang SW, et al.Arabidopsis mgd mutants with reduced monogalactosyldiacylglycerol contents arehypersensitive to aluminium stress.Ecotoxicol Environ Saf, 2020, 203:110999.
    [5] Kochian LV, Piñeros MA, Liu JP, et al.Plant adaptation to acid soils:the molecular basis for crop aluminum resistance.Annu Rev Plant Biol, 2015, 66:571-598.
    [6] Dai BJ, Chen C, Liu Y, et al.Physiological, biochemical, and transcriptomic responses of Neolamarckia cadamba to aluminum stress.Int J Mol Sci, 2020, 21(24):9624.
    [7] Chandra J, Keshavkant S.Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies:a review.Chemosphere, 2021, 278:130384.
    [8] Rahman MA, Lee SH, Ji HC, et al.Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils:current status and opportunities.Int J Mol Sci, 2018, 19(10):3073.
    [9] Wong SC, Cowan IR, Farquhar GD.Stomatal conductance correlates with photosynthetic capacity.Nature, 1979, 282(5737):424-426.
    [10] 李亚敏,刘建中,史永博,等.铝胁迫对黄芩幼苗气孔特性及光合作用的研究.安徽农业科学, 2011, 39(10):5791-5793.Li YM, Liu JZ, Shi YB, et al.Effects of aluminum stress on the stomatal characteristics and photosynthesis of Scutellaria baicalensis Georgi seedlings.J Anhui Agric Sci, 2011, 39(10):5791-5793(in Chinese).
    [11] 肖宜安,李晓红,李蕴,等.铝胁迫对车前光合生理特性的影响.井冈山大学学报(自然科学版), 2010, 31(1):48-52.Xiao YA, Li XH, Li Y, et al.Effects of aluminum stress on photosynthetic physiological characteristics of Plantago asiatica.J Jinggangshan Univ (Nat Sci), 2010, 31(1):48-52(in Chinese).
    [12] 黄玉婷,吴亚,刘大林,等.铝胁迫对草本植物生理的影响机制.草业科学, 2018, 35(6):1517-1527.Huang YT, Wu Y, Liu DL, et al.Advances in the understanding of mechanisms underlying the effects of aluminum stress on herbaceous plant physiology.Pratacultural Sci, 2018, 35(6):1517-1527(in Chinese).
    [13] 王一鸣,龙胜举,陈延,等.土壤酸化对景天三七叶片光合特性及超微结构的影响.浙江农业学报, 2019, 31(6):915-921.Wang YM, Long SJ, Chen Y, et al.Effect of soil simulated acidification on photosynthetic characteristics and ultrastructure of Sedum aizoon L.leaves.Acta Agric Zhejiangensis, 2019, 31(6):915-921(in Chinese).
    [14] Wg F, Fk W.Effects of high soil lead concentration on photosynthetic gas exchange and chlorophyll fluorescence in Brassica chinensis L..Plant Soil Environ, 2016, 61(No.7):316-321.
    [15] 何龙飞,刘友良,沈振国,等.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响.作物学报, 2001(6):857-861.He LF, Liu YL, Shen ZG, et al.Effects of aluminum on respiratory rate and some mitochondrial enzymes activities of wheat roots.Acta Agronom Icasinica, 2001(6):857-861.
    [16] 刘强,柳正葳,贺根,等.铝胁迫对烟草叶片呼吸作用和活性氧代谢的影响.江西农业大学学报, 2017, 39(1):37-42.Liu Q, Liu ZW, He G, et al.Effects of aluminum stress on respiration and reactive oxygen metabolism in leaves of tobacco seedlings.Acta Agric Univ Jiangxiensis, 2017, 39(1):37-42.
    [17] Liu JP, Piñeros MA, Kochian LV.The role of aluminum sensing and signaling in plant aluminum resistance.J Integr Plant Biol, 2014, 56(3):221-230.
    [18] Awasthi JP, Saha B, Panigrahi J, et al.Redox balance, metabolic fingerprint and physiological characterization in contrasting north east Indian rice for aluminum stress tolerance.Sci Rep, 2019, 9(1):8681.
    [19] Pirzadah TB, Malik B, Tahir I, et al.Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species.Plant Physiol Biochem, 2019, 144:178-186.
    [20] Pereira JF.Initial root length in wheat is highly correlated with acid soil tolerance in the field.Sci Agric (Piracicaba, Braz), 2018, 75(1):79-83.
    [21] Silva CMS, Zhang CY, Habermann G, et al.Does the major aluminium-resistance gene in wheat, TaALMT1, also confer tolerance to alkaline soils?Plant Soil, 2018, 424(1/2):451-462.
    [22] Hoekenga OA, Maron LG, Piñeros MA, et al.AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.PNAS, 2006, 103(25):9738-9743.
    [23] Liang CY, Piñeros MA, Tian J, et al.Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.Plant Physiol, 2013, 161(3):1347-1361.
    [24] Ligaba A, Katsuhara M, Ryan PR, et al.The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.Plant Physiol, 2006, 142(3):1294-1303.
    [25] Chen Q, Wu KH, Wang P, et al.Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco.Plant Mol Biol Report, 2013, 31(3):769-774.
    [26] Liu JP, Magalhaes JV, Shaff J, et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.Plant J, 2009, 57(3):389-399.
    [27] Magalhaes JV, Liu JP, Guimarães CT, et al.A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in Sorghum.Nat Genet, 2007, 39(9):1156-1161.
    [28] Garcia-Oliveira AL, Martins-Lopes P, Tolrá R, et al.Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum).Physiol Plant, 2014, 152(3):441-452.
    [29] Maron LG, Piñeros MA, Guimarães CT, et al.Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.Plant J, 2010, 61(5):728-740.
    [30] Wang H, Chen R F, Iwashita T, et al.Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat.New Phytol, 2015, 205(1):273-279
    [31] Degenhardt J, Larsen PB, Howell SH, et al.Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH.Plant Physiol, 1998, 117(1):19-27.
    [32] Yang Y, Wang QL, Geng MJ, et al.Rhizosphere pH difference regulated by plasma membrane H+-ATPase is related to differential Al tolerance of two wheat cultivars.Plant Soil Environ, 2011, 57(5):201-206.
    [33] Geng MJ, Xu MM, Xiao HD, et al.Protective role of mucilage against Al toxicity to root apex of pea (Pisum sativum).Acta Physiol Plant, 2012, 34(4):1261-1266.
    [34] Ramos FT, França MGC, Alvim MN, et al.Aluminum tolerance measured by root growth and mucilage protection in Urochloa brizantha and Urochloa decumbens.J Plant Interact, 2012, 7(3):225-229.
    [35] Alves Silva GE, Toledo Ramos F, Faria AP, et al.Seeds'physicochemical traits and mucilage protection against aluminum effect during germination and root elongation as important factors in a biofuel seed crop (Ricinus communis).Environ Sci Pollut Res, 2014, 21(19):11572-11579.
    [36] 张冉,韩博,任健,等.铝对植物毒害及草本植物耐铝毒机制研究进展.云南农业大学学报(自然科学), 2020, 35(2):353-360.Zhang R, Han B, Ren J, et al.Research progress on aluminum toxicity to plants and mechanisms of aluminum tolerance in herbaceous.J Yunnan Agric Univ Nat Sci, 2020, 35(2):353-360(in Chinese).
    [37] Yang JL, Zhu XF, Peng YX, et al.Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis.Plant Physiol, 2011, 155(4):1885-1892.
    [38] Nagayama T, Nakamura A, Yamaji N, et al.Changes in the distribution of pectin in root border cells under aluminum stress.Front Plant Sci, 2019, 10:1216.
    [39] Eticha D, Stass A, Horst WJ.Cell-wall pectin and its degree of methylation in the maize root-apex:significance for genotypic differences in aluminium resistance.Plant Cell Environ, 2005, 28(11):1410-1420.
    [40] Yang JL, Li YY, Zhang YJ, et al.Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex.Plant Physiol, 2008, 146(2):602-611.
    [41] Zhu XF, Wan JX, Sun Y, et al.Xyloglucan endotransglucosylase-hydrolase17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis.Plant Physiol, 2014, 165(4):1566-1574.
    [42] Jian ZS, Feng MJ, Matsumoto.High aluminum resistance in buckwheat.I.Al-induced specific secretion of oxalic acid from root tips.Plant Physiol, 1998, 117(3):745-751.
    [43] Ma JF, et al.Internal detoxification mechanism of Al in Hydrangea (identification of Al form in the leaves).Plant Physiol, 1997, 113(4):1033-1039.
    [44] Xia JX, Yamaji N, Ma JF.A plasma membrane-localized small peptide is involved in rice aluminum tolerance.Plant J, 2013, 76(2):345-355.
    [45] Huang CF, Yamaji N, Chen ZC, et al.A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice.Plant J, 2012, 69(5):857-867.
    [46] Inostroza-Blancheteau C, Rengel Z, Alberdi M, et al.Molecular and physiological strategies to increase aluminum resistance in plants.Mol Biol Rep, 2012, 39(3):2069-2079.
    [47] Gao HJ, Zhao Q, Zhang XC, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots.J Agric Food Chem, 2014, 62(10):2313-2319.
    [48] Chen ZC, Yamaji N, Motoyama R, et al.Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice.Plant Physiol, 2012, 159(4):1624-1633.
    [49] Wu LY, Guo YY, Cai SG, et al.The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley.J Exp Bot, 2020, 71(20):6512-6523.
    [50] Sawaki Y, Iuchi S, Kobayashi Y, et al.STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities.Plant Physiol, 2009, 150(1):281-294.
    [51] Sasaki T, Yamamoto Y, Ezaki B, et al.A wheat gene encoding an aluminum-activated malate transporter.Plant J, 2004, 37(5):645-653.
    [52] Xu JM, Zhu JY, Liu JJ, et al.SIZ1 negatively regulates aluminum resistance by mediating the STOP1-ALMT1 pathway in Arabidopsis.J Integr Plant Biol, 2021, 63(6):1147-1160.
    [53] Yamaji N, Huang CF, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.Plant Cell, 2009, 21(10):3339-3349.
    [54] Huang CF, Yamaji N, Mitani N, et al.A bacterial-type ABC transporter is involved in aluminum tolerance in rice.Plant Cell, 2009, 21(2):655-667.
    [55] Xia JX, Yamaji N, Kasai T, et al.Plasma membrane-localized transporter for aluminum in rice.PNAS, 2010, 107(43):18381-18385.
    [56] Yokosho K, Yamaji N, Fujii-Kashino M, et al.Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice.Plant Cell Physiol, 2016, 57(5):976-985.
    [57] Che J, Yamaji N, Shen RF, et al.An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice.Plant J, 2016, 88(1):132-142.
    [58] Che J, Tsutsui T, Yokosho K, et al.Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice.New Phytol, 2018, 220(1):209-218.
    [59] Ding ZJ, Yan JY, Xu XY, et al.WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis.Plant J, 2013, 76(5):825-835.
    [60] Li GZ, Wang ZQ, Yokosho K, et al.Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa).New Phytol, 2018, 219(1):149-162.
    [61] Takatsuka H, Umeda M.Hormonal control of cell division and elongation along differentiation trajectories in roots.J Exp Bot, 2014, 65(10):2633-2643.
    [62] Yang ZB, Geng XY, He CM, et al.TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.Plant Cell, 2014, 26(7):2889-2904.
    [63] Kobayashi Y, Kobayashi Y, Sugimoto M, et al.Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers.Plant Physiol, 2013, 162(2):732-740.
    [64] 黎汤侃.铝胁迫下四种桉树幼苗根尖抗氧化系统运作方式与评价[D].南宁:广西大学, 2020.Li TK.Operation and evaluation of antioxidant systems in root tips of four Eucalyptus seedlings under aluminum stress[D].Nanning:Guangxi University, 2020(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓晓霞,李月明,姚堃姝,乔婧文,王竞红,蔺吉祥. 植物适应酸铝胁迫机理的研究进展[J]. 生物工程学报, 2022, 38(8): 2754-2766

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-30
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第6020503位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司