茄子TCP基因家族全基因组的鉴定与分析
作者:
基金项目:

国家自然科学基金(32071892);福建省农林大学科技创新专项基金(CXZX2020109A)


Genome-wide identification and analysis of the TCP gene family in eggplant (Solanum melongena L.)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    TCP (teosinte branched1/cincinnata/proliferating cell factor)转录因子是植物特有转录因子家族,在植物整个生长发育过程中都有着很重要作用。目前,在茄子(Solanum melongena L.)中还没有关于TCP转录因子的相关报道。本研究利用生物信息学方法在茄子基因组数据库中鉴定出分布于11条染色体上的29个茄子TCP家族基因(eggplant TCP,SmTCP)。研究结果显示,该家族所有成员均含有编码TCP保守结构域的序列。这些成员氨基酸长度范围为201–538 aa,外显子数为1或2。亚细胞定位显示,有3个SmTCP (SmTCP02/03/21)蛋白位于细胞质中,其他SmTCP蛋白都位于细胞核中。系统发育树和序列特征分析均将29个SmTCP基因分成ClassⅠ(PCF)和ClassⅡ(CIN和CYC/TB1)两大类。共线性分析发现,17对(21个)SmTCP基因存在共线性关系,且这些存在共线性关系的基因都属于片段复制。基因表达模式分析显示,29个SmTCP基因家族成员在15个组织或器官中都有表达,但是不同成员的表达模式存在差异,其中CIN亚家族的4个基因(SmTCP18/19/20/25)在3个不同生长期的叶片中均较高表达。SmTCP启动子区域的顺式作用元件分析共发现4类顺式作用元件。本研究从多个角度分析了SmTCP基因分子基础,研究了TCP转录因子对茄子生长发育的影响,为茄子分子育种提供理论参考。

    Abstract:

    TCP (teosinte branched1/cincinnata/proliferating cell factor) is a group of plant-specific transcription factors that play important roles in plant growth and development. To date, there are no report about TCP transcription factors in eggplant (Solanum melongena L). In this study, twenty-nine eggplant TCP (SmTCP) family genes distributed on 11 chromosomes were identified from the genome database of eggplant using bioinformatics methods. The results showed that all members of the family contained sequences encoding TCP conserved domains with length of amino acids ranging from 201 to 538 and exon numbers of 1 or 2. Subcellular localization revealed that three SmTCP proteins (SmTCP02/03/21) were located in the cytoplasm and the other SmTCP proteins were located in the nucleus. The 29 TCP transcription factors were divided into ClassⅠ (PCF) and ClassⅡ (CIN and CYC/TB1) by phylogenetic tree and sequence analysis. Collinearity analysis showed that 17 pairs (21) of SmTCP genes had collinearity, and these collinearity genes belonged to segmental duplication. Analysis of gene expression patterns showed that all 29 members of SmTCP gene family were expressed in 15 tissues or organs, but the expression patterns were different. Among them, four gene (SmTCP18/19/20/25) of CIN subfamily were highly expressed in leaves at different growth stages. Analysis of cis-acting elements in the promoter region of SmTCP showed that there were four types of cis-acting elements, which were light response related cis-acting elements, growth and development related cis-acting elements, hormone response related cis-acting elements and stress related cis-acting elements. In summary, the molecular basis of SmTCP genes in eggplant and the influence of TCP gene on the growth and development of eggplant provided a theoretical basis for molecular breeding of eggplant.

    参考文献
    [1] Wang JY, Wang Z, Jia CH, et al.Genome-wide identification and transcript analysis of TCP gene family in banana (Musa acuminata L.).Biochem Genet, 2022, 60(1):204-222.
    [2] Doebley J, Stec A, Hubbard L.The evolution of apical dominance in maize.Nature, 1997, 386(6624):485-488.
    [3] Luo D, Carpenter R, Copsey L, et al.Control of organ asymmetry in flowers of Antirrhinum.Cell, 1999, 99(4):367-376.
    [4] Cubas P, Lauter N, Doebley J, et al.The TCP domain:a motif found in proteins regulating plant growth and development.Plant J, 1999, 18(2):215-222.
    [5] Murre C, McCaw PS, Baltimore D.A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins.Cell, 1989, 56(5):777-783.
    [6] Lin YF, Chen YY, Hsiao YY, et al.Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris.J Exp Bot, 2016, 67(17):5051-5066.
    [7] Martín-Trillo M, Cubas P.TCP genes:a family snapshot ten years later.Trends Plant Sci, 2010, 15(1):31-39.
    [8] Zhao JM, Zhai ZW, Li YN, et al.Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.).Front Plant Sci, 2018, 9:1282.
    [9] Tatematsu K, Nakabayashi K, Kamiya Y, et al.Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana.Plant J, 2008, 53(1):42-52.
    [10] Takeda T, Suwa Y, Suzuki M, et al.The OsTB1 gene negatively regulates lateral branching in rice.Plant J, 2003, 33(3):513-520.
    [11] Aguilar-Martínez JA, Poza-Carrión C, Cubas P.Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds.Plant Cell, 2007, 19(2):458-472.
    [12] Kieffer M, Master V, Waites R, et al.TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis.Plant J, 2011, 68(1):147-158.
    [13] Riechmann JL, Heard J, Martin G, et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes.Science, 2000, 290(5499):2105-2110.
    [14] Yao X, Ma H, Wang J, et al.Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa.J Integr Plant Biol, 2007, 49(6):885-897.
    [15] Parapunova V, Busscher M, Busscher-Lange J, et al.Identification, cloning and characterization of the tomato TCP transcription factor family.BMC Plant Biol, 2014, 14:157.
    [16] Ma J, Wang QL, Sun RR, et al.Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.Sci Rep, 2014, 4:6645.
    [17] Xu RR, Sun P, Jia FJ, et al.Genomewide analysis of TCP transcription factor gene family in Malus domestica.J Genet, 2014, 93(3):733-746.
    [18] Koyama T, Mitsuda N, Seki M, et al.TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis.Plant Cell, 2010, 22(11):3574-3588.
    [19] Aguilar-Martínez JA, Sinha N.Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development.Front Plant Sci, 2013, 4:406.
    [20] Resentini F, Felipo-Benavent A, Colombo L, et al.TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana.Mol Plant, 2015, 8(3):482-485.
    [21] Cubas P, Vincent C, Coen E.An epigenetic mutation responsible for natural variation in floral symmetry.Nature, 1999, 401(6749):157-161.
    [22] Kosugi S, Ohashi Y.PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene.Plant Cell, 1997, 9(9):1607-1619.
    [23] Shi PB, Guy KM, Wu WF, et al.Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus.BMC Plant Biol, 2016, 16:85.
    [24] Zhang X, Bao YL, Shan DQ, et al.Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice.Plant Physiol, 2018, 177(1):352-368.
    [25] Liu YR, Li DY, Yan JP, et al.MiR319 mediated salt tolerance by ethylene.Plant Biotechnol J, 2019, 17(12):2370-2383.
    [26] Yao X, Ma H, Wang J, et al.Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa.J Integr Plant Biol, 2007, 49(6):885-897.
    [27] Chen CJ, Chen H, Zhang Y, et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data.Mol Plant, 2020, 13(8):1194-1202.
    [28] Kumar S, Stecher G, Tamura K.MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets.Mol Biol Evol, 2016, 33(7):1870-1874.
    [29] Hu B, Jin JP, Guo AY, et al.GSDS 2.0:an upgraded gene feature visualization server.Bioinformatics, 2015, 31(8):1296-1297.
    [30] Thompson JD, Gibson TJ, Plewniak F, et al.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res, 1997, 25(24):4876-4882.
    [31] Waterhouse A, Procter J, Martin DA, et al.Jalview:visualization and analysis of molecular sequences, alignments, and structures.BMC Bioinform, 2005, 6(3):1.
    [32] Bailey TL, Boden M, Buske FA, et al.MEME SUITE:tools for motif discovery and searching.Nucleic Acids Res, 2009, 37(Web Server issue):W202-W208.
    [33] Wang YP, Tang HB, Debarry JD, et al.MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity.Nucleic Acids Res, 2012, 40(7):e49.
    [34] Krzywinski M, Schein J, Birol I, et al.Circos:an information aesthetic for comparative genomics.Genome Res, 2009, 19(9):1639-1645.
    [35] Wang LQ, Guo K, Li Y, et al.Expression profiling and integrative analysis of the CESA/CSL superfamily in rice.BMC Plant Biol, 2010, 10:282.
    [36] Cubas P.Role of TCP genes in the evolution of morphological characters in angiosperms.Systematics Association Special Volumes.Boca Raton:CRC Press, 2002:247-266.
    [37]
    [37] 王通,赵孝东,甄萍萍,等.花生TCP转录因子的全基因组鉴定及组织表达特性分析.作物杂志, 2021(2):35-44.Wang T, Zhao XD, Zhen PP, et al.Genome-wide identification and characteristic analyzation of the TCP transcription factors family in peanut.Crops, 2021(2):35-44(in Chinese).
    [38] 刘洋,张慧,辛大伟,等.大豆TCP转录因子家族结构域分析及功能预测.大豆科学, 2012, 31(5):707-713, 717.Liu Y, Zhang H, Xin DW, et al.Domain analysis and function prediction of TCP transcription factors family in soybean.Soybean Sci, 2012, 31(5):707-713, 717(in Chinese).
    [39] Leng XP, Wei HR, Xu XZ, et al.Genome-wide identification and transcript analysis of TCP transcription factors in grapevine.BMC Genomics, 2019, 20(1):786.
    [40] Chai WB, Jiang PF, Huang GY, et al.Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.Physiol Mol Biol Plants, 2017, 23(4):779-791.
    [41] Ma J, Wang QL, Sun RR, et al.Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.Sci Rep, 2014, 4:6645.
    [42] Crawford BCW, Nath U, Carpenter R, et al.CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.Plant Physiol, 2004, 135(1):244-253.
    [43] Palatnik JF, Allen E, Wu XL, et al.Control of leaf morphogenesis by microRNAs.Nature, 2003, 425(6955):257-263.
    [44] Dhaka N, Bhardwaj V, Sharma MK, et al.Evolving tale of TCPs:new paradigms and old lacunae.Front Plant Sci, 2017, 8:479.
    [45] Zhou M, Li DY, Li ZG, et al.Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass.Plant Physiol, 2013, 161(3):1375-1391.
    [46] Francis A, Dhaka N, Bakshi M, et al.Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum.Sci Rep, 2016, 6:38488.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨婷,黎成,申佳瑜,庄彬贤,温永仙. 茄子TCP基因家族全基因组的鉴定与分析[J]. 生物工程学报, 2022, 38(8): 2974-2988

复制
分享
文章指标
  • 点击次数:406
  • 下载次数: 1155
  • HTML阅读次数: 1580
  • 引用次数: 0
历史
  • 收稿日期:2022-02-17
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第5990852位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司