紫苏溶血磷脂酸酰基转移酶基因的克隆与功能分析
作者:
基金项目:

国家自然科学基金(31201266,31401430);山西省重点研发计划(201603D312005,201803D221005-9);山西省晋中市科技重点研发计划(Y172007-5);山西省基础研究计划(自由探索类)(20210302123418);山西农业大学农学院育种工程专项重点培育项目(YZ2021-08)


Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    紫苏(Perilla frutescens)是一种重要食药同源油料作物,种子含油量高达46%−58%,其中α-亚麻酸(C18:3)含量占60%以上。溶血磷脂酸酰基转移酶(lysophosphatidic acid acyltransferase,LPAT)是植物种子三酰基甘油组装过程中的一类关键限速酶。本研究从紫苏发育种子中克隆了其编码基因(PfLPAT2),并利用qRT-PCR技术检测PfLPAT2基因在紫苏不同组织及不同发育时期种子的表达特性。构建PfLPAT2/GFP融合表达载体并通过农杆菌介导瞬时侵染本氏烟草叶片,检测PfLPAT2蛋白的亚细胞定位。构建大肠杆菌(Escherichia coli)表达载体、酵母表达载体和组成型植物过表达载体,分别转化大肠杆菌突变株SM2-1、酿酒酵母(Saccharomyces cerevisiae)野生型菌株INVSc1和普通烟草(Nicotiana tabacum),分析PfLPAT2蛋白的酶活性及生物学功能。结果表明,紫苏PfLPAT2基因ORF为1 155 bp,编码384个氨基酸。功能结构域预测显示PfLPAT2蛋白具有溶血磷脂酸酰基转移酶典型的保守区。PfLPAT2基因在紫苏根、茎、叶、花和开花后10、20、30、40 d的种子中均有表达,且在开花后20 d的种子中高表达。亚细胞定位结果显示PfLPAT2蛋白定位于细胞质。大肠杆菌功能互补测试表明,PfLPAT2可恢复SM2-1细胞膜脂生物合成,具有LPAT酶活性。与非转基因对照相比,转PfLPAT2基因酵母的总油脂含量显著提高,且脂肪酸各组分的含量发生改变,油酸(C18:1)含量增加明显,预示PfLPAT2对C18:1具有较高的底物偏好性。转基因烟草叶片总脂肪酸含量比对照组提高了约0.42倍,C18:1含量增加了约1倍。转基因株系总脂提高和脂肪酸组分的改变表明PfLPAT2异源表达可以促进宿主油脂合成和健康有益型脂肪酸(C18:1和C18:3)的积累。本研究为深入解析紫苏油脂特别是不饱和脂肪酸合成的分子调控机制和改良油料作物油脂品质提供理论依据和基因元件。

    Abstract:

    Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety:Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.

    参考文献
    [1] 陆洁静,任文彬.紫苏的研究概况.农产品加工(学刊), 2009(6):32-34.Lu JJ, Ren WB.Research survey of Perilla frutescens.Acad Period Farm Prod Process, 2009(6):32-34(in Chinese).
    [2] 李鹏,朱建飞,唐春红.紫苏的研究动态.重庆工商大学学报(自然科学版), 2010(3):271-275.Li P, Zhu JF, Tang CH.Research progress of Perilla frutescens and Perilla meal.J Chongqing Technol Bus Univ (Nat Sci Ed), 2010(3):271-275(in Chinese).
    [3] 黄明发,郭莉,郑炯,等.紫苏的研究进展.中国食品添加剂, 2007(4):85-89.Huang MF, Guo L, Zheng J, et al.Study advances in Pefilla frutescens.China Food Addit, 2007(4):85-89(in Chinese).
    [4] 贾春伶,王锦燕,赵奎君,等.《本草纲目》草部药食同源药用植物的记载及启示.中国现代中药, 2020, 22(11):1769-1777.Jia CL, Wang JY, Zhao KJ, et al.Records of medicinaland edible plants in the herb section of compendium of materia medica and their revelation.Mod Chin Med, 2020, 22(11):1769-1777(in Chinese).
    [5] 许万乐,李会珍,张志军,等.紫苏籽油理化性质测定及脂肪酸组分分析.中国粮油学报, 2013, 28(12):106-109.Xu WL, Li HZ, Zhang ZJ, et al.Determination of physicochemical properties and analysis on fatty acid composition of different Perilla seed oil.J Chin Cereals Oils Assoc, 2013, 28(12):106-109(in Chinese).
    [6] 牟朝丽,陈锦屏.紫苏油的脂肪酸组成、维生素E含量及理化性质研究.西北农林科技大学学报(自然科学版), 2006, 34(12):195-198.Mou ZL, Chen JP.Study on the composition of fatty acid, vitamin E content and physicochemical properties of Perilla oil.J Northwest Sci Tech Univ Agric For (Nat Sci Ed), 2006, 34(12):195-198(in Chinese).
    [7] Tang WZ, Liu YZ, Zhao YQ.A new homogenizing technology to obtain rosmarinic acid from Perilla oil meal.Chin Herb Med, 2012, 4(1):70-73.
    [8] 徐章华,邵玉芬,朱国辉.苏子油对大鼠血脂及血液流变性的影响.营养学报, 1997, 19(1):11-15.Xu ZH, Shao YF, Zhu GH.Effects of Perilla frutescens (L.) Britt.oil on blood lipid and hemorrheology in rats.Acta Nutr Sin, 1997, 19(1):11-15(in Chinese).
    [9] 王龙龙.花生二酰甘油酰基转移酶(DGAT)基因的克隆与分析[D].济南:山东师范大学, 2010.Wang LL.Cloning and characterization of diacylglycerol acyltransferase (DGAT) gene in peanut (Arachis hypogaea L.)[D].Jinan:Shandong Normal University, 2010(in Chinese).
    [10] Chapman KD, Ohlrogge JB.Compartmentation of triacylglycerol accumulation in plants.J Biol Chem, 2012, 287(4):2288-2294.
    [11] Ohlrogge J, Browse J.Lipid biosynthesis.Plant Cell, 1995, 7(7):957-970.
    [12] 黄卓烈,朱利泉.生物化学.北京:中国农业出版社, 2004.Huang ZL, Zhu LQ.Biochemistry.Beijing:China Agriculture Press, 2004(in Chinese).
    [13] 戚维聪.油菜发育种子中油脂积累与Kennedy途径酶活性的关系研究[D].南京:南京农业大学, 2008.Qi WC.Studies on correlations of developing seed lipid accumulation with Kennedy pathway enzyme activities in Brassica napus[D].Nanjing:Nanjing Agricultural University, 2008(in Chinese).
    [14] Misra N, Panda PK, Parida BK.Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches.Mol Biol Rep, 2014, 41(12):8319-8332.
    [15] Kim HU, Huang AHC.Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis.Plant Physiol, 2004, 134(3):1206-1216.
    [16] Kim HJ, Silva JE, Iskandarov U, et al.Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.Plant J, 2015, 84(5):1021-1033.
    [17] Arroyo-Caro JM, Chileh T, Kazachkov M, et al.The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis.Cloning and molecular characterization of two LPAT genes that are expressed in castor seeds.Plant Sci, 2013, 199/200:29-40.
    [18] 郝月茹,周雅莉,王志龙,等.紫苏油脂合成相关基因家族鉴定及表达分析.西北植物学报, 2020, 40(10):1663-1671.Hao YR, Zhou YL, Wang ZL, et al.Identification and expression analysis of gene family related to Perilla lipid synthesis.Acta Bot Boreali Occidentalia Sin, 2020, 40(10):1663-1671(in Chinese).
    [19] Angkawijaya AE, Nguyen VC, Nakamura Y.Lysophosphatidic acid Acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis.New Phytol, 2019, 224(1):336-351.
    [20] Zou J, Katavic V, Giblin EM, et al.Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene.Plant Cell, 1997, 9(6):909-923.
    [21] Rao SS, Hildebrand D.Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.Lipids, 2009, 44(10):945-951.
    [22] Chen SL, Lei Y, Xu X, et al.The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds.PLoS One, 2015, 10(8):e0136170.
    [23] Maisonneuve S, Bessoule JJ, Lessire R, et al.Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis.Plant Physiol, 2010, 152(2):670-684.
    [24] 王计平,张玲慧,赵静,等.紫苏种子脂肪酸代谢及关键酶基因调控油脂合成规律的研究.中国粮油学报, 2016, 31(3):91-95.Wang JP, Zhang LH, Zhao J, et al.Regulation of controlling oil synthesis by fatty acid metabolism of Perilla seed and key enzyme gene.J Chin Cereals Oils Assoc, 2016, 31(3):91-95(in Chinese).
    [25] 任文燕,郝月茹,李润植,等.紫苏Pfgpat9基因的鉴定与功能分析.激光生物学报, 2020, 29(2):183-192.Ren WY, Hao YR, Li RZ, et al.Identification and function analysis of Pfgpat9 gene from Perilla frntescens.Acta Laser Biol Sin, 2020, 29(2):183-192(in Chinese).
    [26] Iskandarov U, Silva JE, Kim HJ, et al.A specialized diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of Cuphea seed oil.Plant Physiol, 2017, 174(1):97-109.
    [27] 张玲慧.紫苏种子油脂代谢及限速酶DGAT1基因的表达分析[D].太谷:山西农业大学, 2014.Zhang LH.Study on the lipid metabolism in seeds and expression pattern of the rate-limiting enzyme gene DGAT1 of Perilla[D].Taigu:Shanxi Agricultural University, 2014(in Chinese).
    [28] Xie X, Meesapyodsuk D, Qiu X.Functional analysis of the dehydratase domains of a PUFA synthase from Thraustochytrium in Escherichia coli.Appl Microbiol Biotechnol, 2018, 102(2):847-856.
    [29] 徐荣华,邱丽俊,阳天泉,等.小桐子磷脂二酰甘油酰基转移酶(JcPDAT1) cDNA的克隆与功能鉴定.中国油料作物学报, 2013, 35(2):123-130.Xu RH, Qiu LJ, Yang TQ, et al.Cloning and functioning of phospholipids:diacylglycerol acyltransferase (JcPDAT1) cDNA from Jatropha curcas.Chin J Oil Crop Sci, 2013, 35(2):123-130(in Chinese).
    [30] 谭太龙,冯韬,罗海燕,等.甘蓝型油菜磷脂二酰甘油酰基转移酶(BnPDAT1) cDNA的克隆和功能鉴定.作物学报, 2016, 42(5):658-666.Tan TL, Feng T, Luo HY, et al.Cloning and characterization of phospholipids:diacylglycerol acyltransferase (BnPDAT1) cDNA from Brassica napus L..Acta Agron Sin, 2016, 42(5):658-666(in Chinese).
    [31] 陈莹,高宇,李腾,等.过表达NtAGPase小亚基基因提高烟叶淀粉含量和生物量.生物工程学报, 2021, 37(8):2845-2855.Chen Y, Gao Y, Li T, et al.Overexpression of NtAGPase small subunit gene increases leaf starch content and tobacco biomass.Chin J Biotech, 2021, 37(8):2845-2855(in Chinese).
    [32] 邓咪咪,刘宝玲,王志龙,等.大豆硬脂酰-ACP Δ9脱氢酶(GmSAD)基因家族的鉴定及功能分析.生物工程学报, 2020, 36(4):716-731.Deng MM, Liu BL, Wang ZL, et al.Identification and functional analysis of soybean stearoyl-ACP Δ9 desaturase (GmSAD) gene family.Chin J Biotech, 2020, 36(4):716-731(in Chinese).
    [33] 李璐.紫苏种子脂肪酸代谢及合成相关基因PfPDAT的功能分析[D].太谷:山西农业大学, 2017.Li L.Fatty acid metabolism and functional analysis on PfPDAT gene related to fatty acid biosynthesis in Perilla seeds[D].Taigu:Shanxi Agricultural University, 2017(in Chinese).
    [34] Baud S, Dubreucq B, Miquel M, et al.Storage reserve accumulation in Arabidopsis:metabolic and developmental control of seed filling.Arabidopsis Book, 2008, 6:e0113.
    [35] Lewin TM, Wang P, Coleman RA.Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction.Biochemistry, 1999, 38(18):5764-5771.
    [36] Taylor DC, Francis T, Lozinsky S, et al.Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2(LPAT2) gene from Tropaeolum majus L..Open Plant Sci J, 2010, 4(1):7-17.
    [37] Coleman J.Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity.J Biol Chem, 1990, 265(28):17215-17221.
    [38] Meesapyodsuk D, Chen Y, Ye SJ, et al.Co-expressing Eranthis hyemalis lysophosphatidic acid acyltransferase 2 and elongase improves two very long chain polyunsaturated fatty acid production in Brassica carinata.Metab Eng Commun, 2021, 12:e00171.
    [39] Liu F, Xia YP, Wu L, et al.Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis.Gene, 2015, 557(2):163-171.
    [40] Kim HU, Li YB, Huang AHC.Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis.Plant Cell, 2005, 17(4):1073-1089.
    [41] Tomosugi M, Ichihara K, Saito K.Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor.Planta, 2006, 223(2):349-358.
    [42] 尹永泰.甘蓝型油菜溶血磷脂酰基转移酶家族基因的克隆与表达[D].武汉:华中科技大学, 2016.Yin YT.Cloning and expressing of lysophosphatidic acid acyltransferase family genes from Brassica napus L.[D].Wuhan:Huazhong University of Science and Technology, 2016(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周雅莉,黄旭升,郝月茹,蔡桂萍,史先飞,李润植,王计平. 紫苏溶血磷脂酸酰基转移酶基因的克隆与功能分析[J]. 生物工程学报, 2022, 38(8): 3014-3028

复制
分享
文章指标
  • 点击次数:371
  • 下载次数: 1175
  • HTML阅读次数: 890
  • 引用次数: 0
历史
  • 收稿日期:2022-01-16
  • 在线发布日期: 2022-08-25
  • 出版日期: 2022-08-25
文章二维码
您是第5990949位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司