环状RNA翻译蛋白在癌症中的研究进展
作者:
基金项目:

国家自然科学基金(31600617,81802008);湖北省教育厅科学研究计划(Q20181102)


Circular RNA-encoded peptides and proteins:implications to cancer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    环状RNA (circular RNA,circRNA)是一种单链环状闭合RNA分子,由线性RNA通过反向剪接形成,具有稳定、高度保守、组织特异性等特点。circRNA能够通过形成竞争性内源性RNA、结合蛋白等多种方式参与机体的生理、病理过程。最近发现,circRNA分子可以通过翻译形成多肽或蛋白参与癌症的发生和发展。circRNA是人类癌症中有前途的诊断和预后标志物,也是癌症治疗的潜在药物靶点。本文重点介绍了circRNAs编码的多肽和蛋白质在多种癌症中的相关研究进展。这些多肽和蛋白质分别依赖内部核糖体进入位点和m6A两种不同的机制进行翻译。我们还总结了circRNA编码的多肽和蛋白质在各种癌症的诊断、治疗、预后和机制研究中的潜在用途。

    Abstract:

    Circular RNA (circRNA) is a single-stranded circular closed RNA molecule formed from linear RNA through reverse splicing. circRNAs are stable, highly conserved, and tissue-specific. circRNAs can regulate physiological and pathological processes through various mechanisms such as formation of competing endogenous RNA and interaction with binding proteins. It has been recently revealed that circRNAs can be translated into peptides and proteins to participate in the initiation and development of cancer. circRNAs are promising diagnostic and prognostic markers for human cancers as well as potential drug targets for cancer therapy. This review summarized the research progresses related to circRNA-encoded peptides and proteins in a variety of cancers. These peptides and proteins are translated through two different mechanisms that depend on internal ribosome entry site and m6A, respectively. We also summarized the potential use of circRNA-encoded peptides and proteins in the diagnosis, treatment, prognosis and mechanistic studies of various cancers.

    参考文献
    [1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6):394-424.
    [2] Du WW, Yang WN, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res, 2016, 44(6):2846-2858.
    [3] Shen YY, Zhang MM, Da LS, et al. Circular RNA circ_SETD2 represses breast cancer progression via modulating the miR-155-5p/SCUBE2 axis. Open Med (Wars), 2020, 15(1):940-953.
    [4] Esteller M. Non-coding RNAs in human disease. Nat Rev Genet, 2011, 12(12):861-874.
    [5] Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab, 2018, 9:69-83.
    [6] Wang YH, Yu XH, Luo SS, et al. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun Ageing, 2015, 12:17.
    [7] Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ, 2019, 26(7):1299-1315.
    [8] Braicu C, Zimta AA, Gulei DA, et al. Comprehensive analysis of circular RNAs in pathological states:biogenesis, cellular regulation, and therapeutic relevance. Cell Mol Life Sci, 2019, 76(8):1559-1577.
    [9] Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J, 2019, 38(16):e100836.
    [10] Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1):22-37.e9.
    [11] Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell, 2017, 66(1):9-21.e7.
    [12] Yang Y, Fan XJ, Mao MW, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res, 2017, 27(5):626-641.
    [13] Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell, 1976, 8(4):547-555.
    [14] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. PNAS, 1976, 73(11):3852-3856.
    [15] Dong W, Bi JM, Liu HW, et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer, 2019, 18(1):95.
    [16] Dube U, Del-Aguila JL, Li ZR, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci, 2019, 22(11):1903-1912.
    [17] Cardamone G, Paraboschi EM, Rimoldi V, et al. The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int J Mol Sci, 2017, 18(3):576.
    [18] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol, 2014, 32(5):453-461.
    [19] Li ZY, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3):256-264.
    [20] Liu X, Wang XL, Li JX, et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci China Life Sci, 2020, 63(10):1429-1449.
    [21] Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet, 2019, 20(11):675-691.
    [22] Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 2016, 165(2):289-302.
    [23] Gross JD, Moerke NJ, von der Haar T, et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell, 2003, 115(6):739-750.
    [24] Lasda E, Parker R. Circular RNAs:diversity of form and function. RNA, 2014, 20(12):1829-1842.
    [25] Yang Y, Wang ZF. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol, 2019, 11(10):911-919.
    [26] Zhang ML, Huang NN, Yang XS, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13):1805-1814.
    [27] Zheng X, Chen LJ, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer, 2019, 18(1):47.
    [28] Zhang ML, Zhao K, Xu XP, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun, 2018, 9(1):4475.
    [29] Montero H, Pérez-Gil G, Sampieri CL. Eukaryotic initiation factor 4A (eIF4A) during viral infections. Virus Genes, 2019, 55(3):267-273.
    [30] Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 1988, 334(6180):320-325.
    [31] Godet AC, David F, Hantelys F, et al. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci, 2019, 20(4):924.
    [32] Pelletier J, Sonenberg N. The organizing principles of eukaryotic ribosome recruitment. Annu Rev Biochem, 2019, 88:307-335.
    [33] Kneller EL, Rakotondrafara AM, Miller WA. Cap-independent translation of plant viral RNAs. Virus Res, 2006, 119(1):63-75.
    [34] Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell, 2010, 40(2):228-237.
    [35] Stern-Ginossar N, Thompson SR, Mathews MB, et al. Translational control in virus-infected cells. Cold Spring Harb Perspect Biol, 2019, 11(3):a033001.
    [36] Andreev DE, O'Connor PBF, Fahey C, et al. Translation of 5' leaders is pervasive in genes resistant to eIF2 repression. eLife, 2015, 4:e03971.
    [37] Lan Q, Liu PY, Haase J, et al. The critical role of RNA m6A methylation in cancer. Cancer Res, 2019, 79(7):1285-1292.
    [38] Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol, 2017, 33:319-342.
    [39] Lin SB, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell, 2016, 62(3):335-345.
    [40] Liu JZ, Yue YN, Han DL, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol, 2014, 10(2):93-95.
    [41] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res, 2014, 24(2):177-189.
    [42] Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep, 2014, 8(1):284-296.
    [43] Mauer J, Sindelar M, Despic V, et al. FTO controls reversible m 6Am RNA methylation during snRNA biogenesis. Nat Chem Biol, 2019, 15(4):340-347.
    [44] Shi HL, Zhang XL, Weng YL, et al. M6A facilitates Hippocampus -dependent learning and memory through YTHDF1. Nature, 2018, 563(7730):249-253.
    [45] Zheng GQ, Dahl JA, Niu YM, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell, 2013, 49(1):18-29.
    [46] Li JF, Meng S, Xu MJ, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels. Oncotarget, 2017, 9(3):3752-3764.
    [47] Shi HL, Wei JB, He C. Where, when, and how:context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell, 2019, 74(4):640-650.
    [48] Haussmann IU, Bodi Z, Sanchez-Moran E, et al. M6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 2016, 540(7632):301-304.
    [49] Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell, 2015, 162(6):1299-1308.
    [50] Yang YB, Gao XY, Zhang ML, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst, 2018, 110(3):304-315.
    [51] Xia X, Li XX, Li FY, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer, 2019, 18(1):131.
    [52] Gao XY, Xia X, Li FY, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol, 2021, 23(3):278-291.
    [53] Wu XJ, Xiao SH, Zhang ML, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol, 2021, 22(1):33.
    [54] Liu Y, Li ZJ, Zhang ML, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro-oncology, 2021, 23(5):743-756.
    [55] Pan ZH, Cai JY, Lin JT, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer, 2020, 19(1):71.
    [56] Jiang TL, Xia YW, Lv JL, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer, 2021, 20(1):66.
    [57] Zhang Y, Jiang JJ, Zhang JY, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529 aa protein and regulating PRDX2 protein stability. Mol Cancer, 2021, 20(1):101.
    [58] Zhao JW, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun, 2019, 10(1):2300.
    [59] Li J, Ma MG, Yang XS, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer, 2020, 19(1):142.
    [60] Tang XZ, Guo MJ, Ding PG, et al. BUB1B and circBUB1B544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduct Target Ther, 2021, 6(1):361.
    [61] di Timoteo G, Dattilo D, Centrón-Broco A, et al. Modulation of circRNA metabolism by m6A modification. Cell Rep, 2020, 31(6):107641.
    [62] Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol, 2019, 20(1):84.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柯双熬,赵胜男,刘玉,卓情,童祥文,徐瑶. 环状RNA翻译蛋白在癌症中的研究进展[J]. 生物工程学报, 2022, 38(9): 3131-3140

复制
分享
文章指标
  • 点击次数:458
  • 下载次数: 1244
  • HTML阅读次数: 1828
  • 引用次数: 0
历史
  • 收稿日期:2021-12-08
  • 录用日期:2022-04-06
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6019859位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司