COVID-19检测技术的优点和局限性
作者:

Advantages and limitations of COVID-19 detection techniques
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    由严重急性呼吸系统综合症冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019年冠状病毒肺炎(COVID-19),其持续大流行已对世界公共卫生安全造成严重的危害。发展病毒检测技术并运用于卫生管理包括人员排查、患者鉴别与治疗、减缓病毒传播等方面已发挥了重要作用。本文简要概述了SARS-CoV-2生物学特征,对全球发展使用的SARS-CoV-2病毒主要检测技术和新兴发展检测技术进行了比较详尽的介绍,并对病毒检测技术进行了展望,以期为临床医疗诊断、公共卫生防护、疾病预防和控制等提供理论和技术帮助。

    Abstract:

    The occurrence and persistent pandemic of 2019 coronavirus pneumonia (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has taken a big toll on global public health. The development of virus detection techniques and its application played an important role in health management, including screening, identification and treatment of patients, and slowing down the spread of virus. This review briefly summarizes the biological characteristics of SARS-CoV-2, and introduces in detail the SARS-CoV-2 detection techniques developed and used worldwide. Perspectives on the follow-up development of virus detection techniques were presented, with the aim to facilitate medical diagnosis, public health protection, disease prevention and control.

    参考文献
    [1] Kandimalla R, John A, Abburi C, et al. Current status of multiple drug molecules, and vaccines:an update in SARS-CoV-2 therapeutics. Mol Neurobiol, 2020, 57(10):4106-4116.
    [2] Saxena SK. Coronavirus Disease 2019(COVID-19) Epidemiology, Pathogenesis, Diagnosis, and Therapeutics:Epidemiology, Pathogenesis, Diagnosis, and Therapeutics. Singapore:Springer, 2020:23-31.
    [3] Huang Y, Yang C, Xu XF, et al. Structural and functional properties of SARS-CoV-2 spike protein:potential antivirus drug development for COVID-19. Acta Pharmacol Sin, 2020, 41(9):1141-1149.
    [4] Turoňová B, Sikora M, Schürmann C, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370(6513):203-208.
    [5] US. Food & Drug Administration. Sofia 2 SARS Antigen FIA Kit Instructions for Use[EB/OL].[2022-02-05]. https://www.fda.gov/media/137885/download.
    [6] Lambert-Niclot S, Cuffel A, le Pape S, et al. Evaluation of a rapid diagnostic assay for detection of SARS-CoV-2 antigen in nasopharyngeal swabs. J Clin Microbiol, 2020, 58(8):e00977-20.
    [7] Mertens P, de Vos N, Martiny D, et al. Development and potential usefulness of the COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Front Med (Lausanne), 2020, 7:225.
    [8] Porte L, Legarraga P, Vollrath V, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis, 2020, 99:328-333.
    [9] Dinnes J, Deeks JJ, Berhane S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev, 2021, 3(3):CD013705.
    [10] Larremore DB, Wilder B, Lester E, et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci Adv, 2021, 7(1):eabd5393.
    [11] Krüttgen A, Cornelissen CG, Dreher M, et al. Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. J Virol Methods, 2021, 288:114024.
    [12] 中华人民共和国国家卫生健康委员会. 关于印发新型冠状病毒抗原检测应用方案(试行)的通知[EB/OL].[2022-03-15]. http://www.gov.cn/xinwen/2022-03/11/content_5678610.htm.
    [13] Chaimayo C, Kaewnaphan B, Tanlieng N, et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J, 2020, 17(1):177.
    [14] FDA. In Vitro Diagnostics EUAs-Antigen Diagnostic Tests for SARS-CoV-2[EB/OL].[2022-02-05]. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2.
    [15] Porte L, Legarraga P, Vollrath V, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis, 2020, 99:328-333.
    [16] Espejo AP, Akgun Y, Al Mana AF, et al. Review of current advances in serologic testing for COVID-19. Am J Clin Pathol, 2020, 154(3):293-304.
    [17] GeurtsvanKessel CH, OKBA NMA, Igloi Z, et al. Towards the next phase:evaluation of serological assays for diagnostics and exposure assessment.[EB/OL].[2022-04-04]. https://doi.org/10.1101/2020.04.23.20077156.
    [18] Tozetto-Mendoza TR, Kanunfre KA, Santos Vilas-Boas L, et al. Nucleoprotein-based ELISA for detection of SARS-COV-2 IgG antibodies:could an old assay be suitable for serodiagnosis of the new coronavirus? J Virol Methods, 2021, 290:114064.
    [19] Li ZT, Yi YX, Luo XM, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol, 2020, 92(9):1518-1524.
    [20] Cassaniti I, Novazzi F, Giardina F, et al. Performance of VivaDiag COVID-19 IgM/IgG rapid test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol, 2020, 92(10):1724-1727.
    [21] Cinquanta L, Fontana DE, Bizzaro N. Chemiluminescent immunoassay technology:what does it change in autoantibody detection? Auto Immun Highlights, 2017, 8(1):9.
    [22] Bryan A, Pepper G, Wener MH, et al. Performance characteristics of the Abbott architect SARS-CoV-2 IgG assay and seroprevalence in Boise, Idaho. J Clin Microbiol, 2020, 58(8):e00941-20.
    [23] Ma H, Zeng WH, He HL, et al. COVID-19 diagnosis and study of serum SARS-CoV-2 specific IgA, IgM and IgG by a quantitative and sensitive immunoassay.[EB/OL].[2022-04-04]. https://doi.org/10.1101/2020.04.17.20064907.
    [24] Van Elslande J, Houben E, Depypere M, et al. Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients. Clin Microbiol Infect, 2020, 26(8):1082-1087.
    [25] Traugott M, Aberle SW, Aberle JH, et al. Performance of SARS-CoV-2 antibody assays in different stages of the infection:comparison of commercial ELISA and rapid tests. J Infect Dis, 2020, 222(3):362-366.
    [26] Autorité De Santé Haute. Place Des Tests Sérologiques Dans La Stratégie De Prise En Charge De La Maladie COVID-19. Revue Francophone des Laboratoires, 2020, 526:48-56.
    [27] Infectious Diseases Society of America. IDSA COVID-19 Antibody Primer.[EB/OL].[2021-12-15]. https://www.idsociety.org/globalassets/idsa/public-health/covid-19/idsa-covid-19-antibody-testing-primer.pdf
    [28] Chu DKW, Pan Y, Cheng SMS, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem, 2020, 66(4):549-555.
    [29] Chan JFW, Yuan SF, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a family cluster. Lancet, 2020, 395(10223):514-523.
    [30] Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020, 25(3):2000045.
    [31] Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med, 2020, 382(10):929-936.
    [32] Corman V, Bleicker T, Brunink S, Drosten C. 2020. Diagnostic detection of Wuhan coronavirus 2019 by real-time RT-PCR. World Health Organization, Geneva, Switzerland.[EB/OL].[2020-01-13]. https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2.
    [33] LeBlanc JJ, Gubbay JB, Li Y, et al. Real-time PCR-based SARS-CoV-2 detection in Canadian laboratories. J Clin Virol, 2020, 128:104433.
    [34] Government of Canada. 2020. Interim national case definition:coronavirus disease (COVID-19), updated April 2, 2020. Government of Canada, Ottawa, Ontario, Canada.[EB/OL].[2021-12-17]. https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/health-professionals/national-case-definition.html.
    [35] Smith E, Zhen W, Manji R, et al. Analytical and clinical comparison of three nucleic acid amplification tests for SARS-CoV-2 detection. J Clin Microbiol, 2020, 58(9):e01134-20.
    [36] Liotti FM, Menchinelli G, Marchetti S, et al. Evaluating the newly developed BioFire COVID-19 test for SARS-CoV-2 molecular detection. Clin Microbiol Infect, 2020, 26(12):1699-1700.
    [37] Arumugam A, Faron ML, Yu P, et al. A rapid COVID-19 RT-PCR detection assay for low resource settings. Diagnostics (Basel), 2020, 10(10):739.
    [38] Hui Y, Wu ZM, Qin ZR, et al. Micro-droplet digital polymerase chain reaction and real-time quantitative polymerase chain reaction technologies provide highly sensitive and accurate detection of zika virus. Virol Sin, 2018, 33(3):270-277.
    [39] Zaghloul H, El-Shahat M. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis. World J Hepatol, 2014, 6(12):916-922.
    [40] Wang J, Cai K, He X, et al. Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin Microbiol Infect, 2020, 26(8):1076-1081.
    [41] Qian J, Boswell SA, Chidley C, et al. An enhanced isothermal amplification assay for viral detection. Nat Commun, 2020, 11(1):5920.
    [42] Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 2002, 16(3):223-229.
    [43] Sharma S, Kabir MA, Asghar W. Lab-on-a-chip zika detection with reverse transcription loop-mediated isothermal amplification-based assay for point-of-care settings. Arch Pathol Lab Med, 2020, 144(11):1335-1343.
    [44] Hardinge P, Murray JAH. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep, 2019, 9(1):7400.
    [45] Lu RF, Wu XM, Wan ZZ, et al. Development of a novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Virol Sin, 2020, 35(3):344-347.
    [46] Yan C, Cui J, Huang L, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect, 2020, 26(6):773-779.
    [47] Yang WH, Dang XF, Wang QX, et al. Rapid Detection of SARS-CoV-2 Using Reverse transcription RT-LAMP method.[EB/OL].[2022-04-04]. https://doi.org/10.1101/2020.03.02.20030130.
    [48] Zhu X, Wang XX, Han LM, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron, 2020, 166:112437.
    [49] Abd el-Galil KH, El-Sokkary MA, Kheira SM, et al. Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. Appl Environ Microbiol, 2005, 71(11):7113-7116.
    [50] Damen M, Sillekens P, Cuypers HT, et al. Characterization of the quantitative HCV NASBA assay. J Virol Methods, 1999, 82(1):45-54.
    [51] Wu QX, Suo CQ, Brown T, et al. INSIGHT:a population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Sci Adv, 2021, 7(7):eabe5054.
    [52] Brentano ST, Mcdonough SH. Isothermal Amplification of RNA by Transcription-Mediated Amplification (TMA) Nonradioactive Anal Biomol. Berlin, Heidelberg:Springer Berlin Heidelberg, 2000:374-380.
    [53] Pham J, Meyer S, Nguyen C, et al. Performance characteristics of a high-throughput automated transcription-mediated amplification test for SARS-CoV-2 detection. J Clin Microbiol, 2020, 58(10):e01669-20.
    [54] Gorzalski AJ, Tian HL, Laverdure C, et al. High-Throughput Transcription-mediated amplification on the Hologic Panther is a highly sensitive method of detection for SARS-CoV-2. J Clin Virol, 2020, 129:104501.
    [55] Zhen W, Manji R, Smith E, et al. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. J Clin Microbiol, 2020, 58(8):e00743-20.
    [56] Hologic Panther. Aptima® SARS-CoV-2 Assay 2020.[EB/OL].[2021-12-05]. https://www.fda.gov/media/138096/download.
    [57] Tian B, Gao F, Fock J, et al. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron, 2020, 165:112356.
    [58] Huang W, Hsu H, Su J, et al. Room temperature isothermal colorimetric padlock probe rolling circle amplification for viral RNA detection.[EB/OL].[2022-04-04]. https://doi.org/10.1101/2020.06.12.128876.
    [59] Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, et al. Tools and techniques for severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)/COVID-19 detection. Clin Microbiol Rev, 2021, 34(3):e00228-20.
    [60] Zhang F, Abudayyeh OO, Gootenberg JS. 2020. A protocol for detection of COVID-19 using CRISPR diagnostics. Broad Institute, MIT, Cambridge, MA.[EB/OL].[2022-04-04]. https://go.idtdna.com/rs/400-UEU-432/images/Zhang%20et%20al.%2C%202020%20COVID-19%20detection%20%28updated%29.pdf.
    [61] Joung J, Ladha A, Saito M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N Engl J Med, 2020, 383(15):1492-1494.
    [62] Broughton JP, Deng XD, Yu GX, et al. CRISPR- cas12-based detection of SARS-CoV-2. Nat Biotechnol, 2020, 38(7):870-874.
    [63] Zhou HF, Tsou JH, Chinthalapally M, et al. Detection and differentiation of SARS-CoV-2, influenza, and respiratory syncytial viruses by CRISPR. Diagnostics (Basel), 2021, 11(5):823.
    [64] First NGS-based COVID-19 diagnostic. Nat Biotechnol, 2020, 38(7):777.
    [65] Nasir JA, Kozak RA, Aftanas P, et al. A comparison of whole genome sequencing of SARS-CoV-2 using amplicon-based sequencing, random hexamers, and bait capture. Viruses, 2020, 12(8):895.
    [66] Tian JB, Yuan XL, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China:a multicentre, retrospective, cohort study. Lancet Oncol, 2020, 21(7):893-903.
    [67] Lu J, du Plessis L, Liu Z, et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell, 2020, 181(5):997-1003.e9.
    [68] Meredith LW, Hamilton WL, Warne B, et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19:a prospective genomic surveillance study. Lancet Infect Dis, 2020, 20(11):1263-1272.
    [69] Xiao MF, Liu XQ, Ji JK, et al. Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Med, 2020, 12(1):57.
    [70] Jary A, Leducq V, Malet I, et al. Evolution of viral quasi species during SARS-CoV-2 infection. Clin Microbiol Infect, 2020, 26(11):1560.e1-1561560.e4.
    [71] Karamitros T, Papadopoulou G, Bousali M, et al. SARS-CoV-2 exhibits intra-host genomic plasticity and low-frequency polymorphic quasi species. J Clin Virol, 2020, 131:104585.
    [72] Jain M, Olsen HE, Paten B, et al. The Oxford Nanopore MinION:delivery of nanopore sequencing to the genomics community. Genome Biol, 2016, 17(1):239.
    [73] Bull RA, Adikari TN, Ferguson JM, et al. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nat Commun, 2020, 11(1):6272.
    [74] Wang M, Fu AS, Hu B, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small, 2020, 16(32):e2002169.
    [75] 中华人民共和国国家卫生健康委员会. 关于印发新型冠状病毒肺炎防控方案(第五版)的通知[EB/OL].[2022-03-15]. http://www.gov.cn/zhengce/zhengceku/2020-02/22/content_5482010.htm.
    [76] Administration U F A D. In vitro diagnostics EUAs.US Food and Drug Administration, Silver Spring, MD.[EB/OL].[2022-02-05]. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-2.
    [77] 中华人民共和国国家卫生健康委员会. 关于印发新型冠状病毒肺炎防控方案(第八版)的通知[EB/OL].[2022-03-15]. http://www.gov.cn/xinwen/2021-05/14/content_5606469.htm.
    [78] Banada P, Green R, Banik S, et al. A simple reverse transcriptase PCR melting-temperature assay to rapidly screen for widely circulating SARS-CoV-2 variants. J Clin Microbiol, 2021, 59(10):e0084521.
    [79] Ong DSY, Koeleman JGM, Vaessen N, et al. Rapid screening method for the detection of SARS-CoV-2 variants of concern. J Clin Virol, 2021, 141:104903.
    [80] Ning B, Youngquist BM, Li DD, et al. Rapid detection of multiple SARS-CoV-2 variants of concern by PAM-targeting mutations. Cell Rep Methods, 2022, 2(2):100173.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张丽珊,陈忠正,梁志坤. COVID-19检测技术的优点和局限性[J]. 生物工程学报, 2022, 38(9): 3141-3156

复制
分享
文章指标
  • 点击次数:326
  • 下载次数: 1201
  • HTML阅读次数: 1665
  • 引用次数: 0
历史
  • 收稿日期:2021-12-31
  • 录用日期:2022-05-07
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6019859位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司