新型冠状病毒的糖基化、糖受体识别及糖链抑制剂的发现
作者:
基金项目:

国家重点研发计划(2019YFD0902000);大连市呼吸道防护工程研究中心专项基金


Glycosylation, glycan receptors recognition of SARS-CoV-2 and discoveries of glycan inhibitors against SARS-CoV-2
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [94]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    新型冠状病毒疫情(COVID-19)是21世纪截至目前人类面对的最为严重的公共卫生事件。疫苗、中和抗体以及小分子化合药物的出现有效预防和阻止了COVID-19的快速传播,而不断出现的病毒突变体却使这些疫苗及药物的效价降低,这对COVID-19的预防及治疗提出了新的挑战。新型冠状病毒(SARS-CoV-2)通常会先黏附于呼吸道表面的大分子糖链——硫酸乙酰肝素,进而与特异性受体人血管紧张素转化酶2(human angiotensin-converting enzyme 2,hACE2)结合,从而实现对人体的侵入。SARS-CoV-2的刺突(spike,S)蛋白是高度糖基化的,而糖基化对于hACE2与S蛋白的结合也有着重要影响,S蛋白在宿主体内还会被一系列凝集素受体所结合,这意味着糖链在SARS-CoV-2的入侵及感染过程中有着重要的作用。基于SARS-CoV-2的糖基化及糖受体识别机制开发糖链抑制剂可能是预防或治疗新型冠状病毒感染的有效手段,相关研究发现海洋来源的硫酸化多糖、肝素分子及其他的一些糖类具有抗SARS-CoV-2的活性。本文系统阐述了新型冠状病毒的糖基化及其糖链在入侵、感染中的作用,并对抗SARS-CoV-2糖链抑制剂的发现和机制研究现状进行了总结,在此基础上还对糖类抗病毒药物的机遇与挑战进行了展望。

    Abstract:

    COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.

    参考文献
    [1] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus:classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol, 2020, 5(4):536-544.
    [2] Dawood FS, Ricks P, Njie GJ, et al. Observations of the global epidemiology of COVID-19 from the prepandemic period using web-based surveillance:a cross-sectional analysis. Lancet Infect Dis, 2020, 20(11):1255-1262.
    [3] Ferioli M, Cisternino C, Leo V, et al. Protecting healthcare workers from SARS-CoV-2 infection:practical indications. Eur Respir Rev, 2020, 29(155):200068.
    [4] Peiris JSM, Yuen KY, Osterhaus ADME, et al. The severe acute respiratory syndrome. N Engl J Med, 2003, 349(25):2431-2441.
    [5] Hui KPY, Cheung MC, Perera RAPM, et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva:an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med, 2020, 8(7):687-695.
    [6] Lamers MM, Beumer J, Van Der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020, 369(6499):50-54.
    [7] 郑楠, 赵明, 田晓鑫, 等. 全球新型冠状病毒疫苗及治疗药物研发现状与趋势. 中国新药杂志, 2022, 31(1):69-76. Zheng N, Zhao M, Tian XX, et al. Global research and development of COVID-19 vaccine and therapeutics:status and trend. Chin J New Drugs, 2022, 31(1):69-76(in Chinese).
    [8] Wang ZL, Yang LY. Chinese herbal medicine:fighting SARS-CoV-2 infection on all fronts. J Ethnopharmacol, 2021, 270:113869.
    [9] 杨柳, 杨海琴, 李俊灿, 等. 新型冠状病毒肺炎用药. 世界科学技术-中医药现代化, 2021, 23(4):1013-1020. Yang L, Yang HQ, Li JC, et al. Medication for COVID-19. Mod Tradit Chin Med Mater Med World Sci Technol, 2021, 23(4):1013-1020(in Chinese).
    [10] 杨宏志, 林瑞超, 董汛, 等. 香藿喷雾剂联合基础康复疗法治疗新型冠状病毒肺炎恢复期余毒未清证60例临床研究. 中医杂志, 2021, 62(17):1509-1513. Yang HZ, Lin RC, Dong X, et al. Xiang huo spray combined with basic rehabilitation therapy in treating 60 Cases of COVID-19 with syndrome of residual toxin during convalescence period. J Tradit Chin Med, 2021, 62(17):1509-1513(in Chinese).
    [11] 周政, 朱春胜, 张冰. 基于数据挖掘的中医药治疗新型冠状病毒肺炎用药规律研究. 中国中药杂志, 2020, 45(6):1248-1252. Zhou Z, Zhu CS, Zhang B. Study on medication regularity of traditional Chinese medicine in treatment of COVID-19 based on data mining. China J Chin Mater Med, 2020, 45(6):1248-1252(in Chinese).
    [12] Cao YL, Wang J, Jian FC, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602(7898):657-663.
    [13] Lu L, Mok BW, Chen LL, et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or coronavac vaccine recipients. Clin Infect Dis, 2021:ciab1041.
    [14] Edara VV, Manning KE, Ellis M, et al. mRNA-1273 and BNT162b2 mRNA vaccines have reduced neutralizing activity against the SARS-CoV-2 Omicron variant. bioRxiv, 2021:2021Dec22;2021.12.20.473557.
    [15] Kim D, Lee JY, Yang JS, et al. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4):914-921.e10.
    [16] Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2):281-292.e6.
    [17] Wrapp D, Wang NS, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483):1260-1263.
    [18] Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell, 2020, 78(4):779-784.e5.
    [19] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2):271-280.e8.
    [20] Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol, 2010, 84(24):12658-12664.
    [21] Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol, 2013, 87(23):12552-12561.
    [22] Belouzard S, Millet JK, Licitra BN, et al. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6):1011-1033.
    [23] Li WH, Moore MJ, Vasilieva N, et al. Angiotensin- converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965):450-454.
    [24] Raj VS, Mou HH, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440):251-254.
    [25] Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357(6377):420-422.
    [26] Shajahan A, Supekar NT, Gleinich AS, et al. Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology, 2020, 30(12):981-988.
    [27] Tian WM, Li DL, Zhang N, et al. O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an "O-follow-N" rule. Cell Res, 2021, 31(10):1123-1125.
    [28] Zhang Y, Zhao WJ, Mao YH, et al. O-glycosylation landscapes of SARS-CoV-2 spike proteins. Front Chem, 2021, 9:689521.
    [29] Cai YF, Zhang J, Xiao TS, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511):1586-1592.
    [30] Casalino L, Gaieb Z, Goldsmith JA, et al. Beyond shielding:the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci, 2020, 6(10):1722-1734.
    [31] Huang YJ, Zhao H, Huang X, et al. Identification of oligosaccharyltransferase as a host target for inhibition of SARS-CoV-2 and its variants. Cell Discov, 2021, 7(1):116.
    [32] Gao T, Hu MD, Zhang XP, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. Infect Dis, 2020.
    [33] López-Muñoz AD, Kosik I, Holly J, et al. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. bioRxiv, 2021:2021Dec13;2021.12.10.472169.
    [34] Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol, 2021, 22(7):829-838.
    [35] Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj, 2019, 1863(10):1480-1497.
    [36] Mohan GS, Li WF, Ye L, et al. Antigenic subversion:a novel mechanism of host immune evasion by Ebola virus. PLoS Pathog, 2012, 8(12):e1003065.
    [37] Bukreyev A, Yang LJ, Fricke J, et al. The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes. J Virol, 2008, 82(24):12191-12204.
    [38] Nguyen HL, Lan PD, Thai NQ, et al. Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? J Phys Chem B, 2020, 124(34):7336-7347.
    [39] Kim SY, Jin WH, Sood A, et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2(SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res, 2020, 181:104873.
    [40] Mycroft-West CJ, Su DH, Pagani I, et al. Heparin inhibits cellular invasion by SARS-CoV-2:structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb Haemost, 2020, 120(12):1700-1715.
    [41] Patel M, Yanagishita M, Roderiquez G, et al. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res Hum Retroviruses, 1993, 9(2):167-174.
    [42] O'Donnell CD, Shukla D. The importance of heparan sulfate in herpesvirus infection. Virol Sin, 2008, 23(6):383-393.
    [43] Clausen TM, Sandoval DR, Spliid CB, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 2020, 183(4):1043-1057.e15.
    [44] Yang Y, Du Y, Kaltashov IA. The utility of native MS for understanding the mechanism of action of repurposed therapeutics in COVID-19:heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor. Anal Chem, 2020, 92(16):10930-10934.
    [45] Shukla D, Liu J, Blaiklock P, et al. A novel role for 3-O-sulfated heparan sulfate in Herpes simplex virus 1 entry. Cell, 1999, 99(1):13-22.
    [46] Yang TJ, Yu PY, Chang YC, et al. D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. J Biol Chem, 2021, 297(4):101238.
    [47] Shajahan A, Archer-Hartmann S, Supekar NT, et al. Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2. Glycobiology, 2021, 31(4):410-424.
    [48] Zhao P, Praissman JL, Grant OC, et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe, 2020, 28(4):586-601.e6.
    [49] Li WH, Zhang CS, Sui JH, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J, 2005, 24(8):1634-1643.
    [50] Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004, 203(2):631-637.
    [51] Danilczyk U, Eriksson U, Crackower MA, et al. A story of two ACEs. J Mol Med (Berl), 2003, 81(4):227-234.
    [52] Zou X, Chen K, Zou JW, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. 1.
    [94] Alencar POC, Lima GC, Barros FCN, et al. A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata:in vitro and in vivo activities. Food Hydrocoll, 2019, 90:28-34.
    [95] Dore CM, Das C Faustino Alves MG, Will LS, et al. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr Polym, 2013, 91(1):467-475.
    [96] Fernando IPS, Sanjeewa KKA, Samarakoon KW, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. ALGAE, 2017, 32(1):75-86.
    [97] Bezerra IL, Caillot ARC, Palhares LCGF, et al. Structural characterization of polysaccharides from Cabernet Franc, Cabernet Sauvignon and Sauvignon Blanc wines:Anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Carbohydr Polym, 2018, 186:91-99.
    [98] Wang W, Wu JD, Zhang XS, et al. Inhibition of influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep, 2017, 7:40760.
    [99] Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res, 2017, 143:142-150.
    [100] Wang SY, Wang W, Hao C, et al. Antiviral activity against Enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr Polym, 2018, 200:43-53.
    [101] Cao YG, Hao Y, Li ZH, et al. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus. Biomed Pharmacother, 2016, 84:1705-1710.
    [102] Lopes N, Ray S, Espada SF, et al. Green seaweed Enteromorpha compressa (Chlorophyta, Ulvaceae) derived sulphated polysaccharides inhibit Herpes simplex virus. Int J Biol Macromol, 2017, 102:605-612.
    [103] Yue YY, Li ZH, Li P, et al. Antiviral activity of a polysaccharide from Laminaria japonica against Enterovirus 71. Biomed Pharmacother, 2017, 96:256-262.
    [104] Abu-Galiyun E, Huleihel M, Levy-Ontman O. Antiviral bioactivity of renewable polysaccharides against varicella zoster. Cell Cycle, 2019, 18(24):3540-3549.
    [105] Sun QL, Li Y, Ni LQ, et al. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr Polym, 2020, 229:115487.
    [106] Kwon PS, Oh H, Kwon SJ, et al. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov, 2020, 6(1):50.
    [107] Song S, Peng HR, Wang QL, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct, 2020, 11(9):7415-7420.
    [108] Jin WH, Zhang WJ, Mitra D, et al. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int J Biol Macromol, 2020, 163:1649-1658.
    [109] Dwivedi R, Samanta P, Sharma P, et al. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. J Biol Chem, 2021, 297(4):101207.
    [110] Zhang SH, Pei RJ, Li MX, et al. Cocktail polysaccharides isolated from Ecklonia kurome against the SARS-CoV-2 infection. Carbohydr Polym, 2022, 275:118779.
    [111] Hao W, Ma B, Li ZH, et al. Binding of the SARS-CoV-2 spike protein to glycans. Sci Bull (Beijing), 2021, 66(12):1205-1214.
    [112] Petruk G, Puthia M, Petrlova J, et al. SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. J Mol Cell Biol, 2020, 12(12):916-932.
    [113] Eid JI, Das B, Al-Tuwaijri MM, et al. Tar?eting SARS-CoV-2 with Chaga mushroom:an in silico study toward developing a natural antiviral compound. Food Sci Nutr, 2021, 9(12):6513-6523.
    [114] Riva L, Yuan SF, Yin X, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827):113-119.
    [115] Touret F, Gilles M, Barral K, et al. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep, 2020, 10(1):13093.
    [116] Milewska A, Kaminski K, Ciejka J, et al. HTCC:broad range inhibitor of coronavirus entry. PLoS One, 2016, 11(6):e0156552.
    [117] Koenighofer M, Lion T, Bodenteich A, et al. Carrageenan nasal spray in virus confirmed common cold:individual patient data analysis of two randomized controlled trials. Multidiscip Respir Med, 2014, 9(1):57.
    [118] Ludwig M, Enzenhofer E, Schneider S, et al. Efficacy of a carrageenan nasal spray in patients with common cold:a randomized controlled trial. Respir Res, 2013, 14(1):124.
    [119] Marks RM, Lu H, Sundaresan R, et al. Probing the interaction of dengue virus envelope protein with heparin:assessment of glycosaminoglycan-derived inhibitors. J Med Chem, 2001, 44(13):2178-2187.
    [120] Liu ZH, Niu FJ, Xie YX, et al. A review:natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed Pharmacother, 2020, 129:110469.
    [121] Fischl MA, Resnick L, Coombs R, et al. The safety and efficacy of combination N-butyl-deoxynojirimycin (SC-48334) and zidovudine in patients with HIV-1 infection and 200‒500 CD4 cells/mm3. J Acquir Immune Defic Syndr (1988), 1994, 7(2):139-147.hages in murine bone marrow-derived macrophages through the activation of JNK. J Cell Biochem, 2017, 118(9):2664-2671.
    [80] Minato KI, Laan LC, Van Die I, et al. Pleurotus citrinopileatus polysaccharide stimulates anti- inflammatory properties during monocyte-to- macrophage differentiation. Int J Biol Macromol, 2019, 122:705-712.
    [81] Zhang MM, Wu WJ, Ren Y, et al. Structural characterization of a novel polysaccharide from Lepidium meyenii (maca) and analysis of its regulatory function in macrophage polarization in vitro. J Agric Food Chem, 2017, 65(6):1146-1157.
    [82] Wei W, Li ZP, Bian ZX, et al. Astragalus polysaccharide RAP induces macrophage phenotype polarization to M1 via the notch signaling pathway. Molecules, 2019, 24(10):2016.
    [83] Wileman TE, Lennartz MR, Stahl PD. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. PNAS, 1986, 83(8):2501-2505.
    [84] Liu J, Tang JQ, Li XT, et al. Curdlan (Alcaligenes faecalis) (1→3)-β-d-glucan oligosaccharides drive M1 phenotype polarization in murine bone marrow-derived macrophages via activation of MAPKs and NF-κB pathways. Molecules, 2019, 24(23):4251.
    [85] Deng C, Fu HT, Shang JY, et al. Dectin-1 mediates the immunoenhancement effect of the polysaccharide from Dictyophora indusiata. Int J Biol Macromol, 2018, 109:369-374.
    [86] Smith AJ, Graves B, Child R, et al. Immunoregulatory activity of the natural product laminarin varies widely as a result of its physical properties. J Immunol, 2018, 200(2):788-799.
    [87] Zhou Z, Ren LL, Zhang L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe, 2020, 27(6):883-890.e2.
    [88] Cheng C, Zhang F. Correspondence on:'interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation-an open-label cohort study' by Della-Torre et al. Ann Rheum Dis, 2020:2020Aug19;annrheumdis-2020Aug19; annrheu2020-218616.
    [89] Li ZT, Li L, Zhou HX, et al. Radix isatidis polysaccharides inhibit influenza a virus and influenza A virus-induced inflammation via suppression of host TLR3 signaling in vitro. Molecules, 2017, 22(1):116.
    [90] Wang YH, Hwang JY, Park HB, et al. Porphyran isolated from Pyropia yezoensis inhibits lipopolysaccharide-induced activation of dendritic cells in mice. Carbohydr Polym, 2020, 229:115457.
    [91] Cheng JJ, Chao CH, Chang PC, et al. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocoll, 2016, 53:37-45.
    [92] Wu GJ, Shiu SM, Hsieh MC, et al. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll, 2016, 53:16-23.
    [93] Dinić M, Pecikoza U, Djokić J, et al. Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Front Pharmacol, 2018, 9:
    引证文献
引用本文

喻伟艳,许跃强,李建军,李志敏,王琪,杜昱光. 新型冠状病毒的糖基化、糖受体识别及糖链抑制剂的发现[J]. 生物工程学报, 2022, 38(9): 3157-3172

复制
分享
文章指标
  • 点击次数:385
  • 下载次数: 1316
  • HTML阅读次数: 1577
  • 引用次数: 0
历史
  • 收稿日期:2022-03-07
  • 录用日期:2022-06-01
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6081178位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司