重组胶原蛋白的产业发展历程和生物医学应用前景展望
作者:
基金项目:

国家重点研发计划(2019YFA0905200)


Industrial development and biomedical application prospect of recombinant collagen
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [99]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    重组胶原蛋白作为天然动物组织胶原的替代物具有广泛应用于生物材料、生物医学等领域的潜力。种类繁多的重组胶原蛋白类型及其衍生体在多种表达系统中可实现一定规模的产业化生产,为探索和拓展重组胶原蛋白的临床应用奠定了基础。文中简述了重组胶原蛋白的不同表达体系,如大肠杆菌、酵母、植物、昆虫、哺乳动物和人类细胞表达体系,重组胶原蛋白的优势及潜在的应用和局限。着重介绍了目前重组胶原蛋白生产,包括不同表达体系的构建策略和重组胶原蛋白羟基化修饰等方面的研究进展,总结了重组胶原蛋白在生物医药领域的应用及应用基础研究和应用前景展望。

    Abstract:

    Recombinant collagen, as an alternative to natural collagen, has the potential to be widely used in biomaterials, biomedicine, etc. Diverse recombinant collagens and their variants can be industrially produced in a variety of expression systems, which lays a foundation for exploring and expanding the clinical application of recombinant collagens. We reviewed different expression systems for recombinant collagens, such as prokaryotic expression systems, yeast expression systems, as well as plant, insect, mammal, and human cell expression systems, and introduced the advantages, potential applications, and limitations of recombinant collagen. In particularly, we focused on the current progress in the recombinant collagen production, including recombinant expression system construction and hydroxylation strategies of recombinant collagen, and summarized the current biomedical applications of recombinant collagen.

    参考文献
    [1] Liu XH, Zheng C, Luo XM, et al. Recent advances of collagen-based biomaterials:multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C, 2019, 99:1509-1522.
    [2] Li J, Wang MC, Qiao YY, et al. Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochem, 2018, 74:156-163.
    [3] Liu YW, Gan LS, Carlsson DJ, et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest Ophthalmol Vis Sci, 2006, 47(5):1869-1875.
    [4] Kouris NA, Squirrell JM, Jung JP, et al. A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regen Med, 2011, 6(5):569-582.
    [5] Koens MJW, Faraj KA, Wismans RG, et al. Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel. Acta Biomater, 2010, 6(12):4666-4674.
    [6] Sun LL, Li BF, Jiang DD, et al. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids Surf B Biointerfaces, 2017, 159:89-96.
    [7] Ramshaw JAM, Werkmeister JA, Glattauer V. Recent progress with recombinant collagens produced in Escherichia coli. Curr Opin Biomed Eng, 2019, 10:149-155.
    [8] Fertala A, Sieron AL, Hojima Y, et al. Self-assembly into fibrils of collagen Ⅱ by enzymic cleavage of recombinant procollagen Ⅱ. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem, 1994, 269(15):11584-11589.
    [9] Geddis AE, Prockop DJ. Expression of human COL1A1 gene in stably transfected HT1080 cells. Matrix, 1993, 13:399-405.
    [10] Fukuda K, Hori H, Utani A, et al. Formation of recombinant triple-helical[α1(Ⅳ)]2α2(Ⅳ) collagen molecules in CHO cells. Biochem Biophys Res Commun, 1997, 231(1):178-182.
    [11] Frischholz S, Beier F, Girkontaite I, et al. Characterization of human type X procollagen and its NC-1 domain expressed as recombinant proteins in HEK293 cells. J Biol Chem, 1998, 273(8):4547-4555.
    [12] Tomita M, Kitajima T, Yoshizato K. Formation of recombinant human procollagen I heterotrimers in a baculovirus expression system. J Biochem, 1997, 121(6):1061-1069.
    [13] Nokelainen M, Helaakoski T, Myllyharju J, et al. Expression and characterization of recombinant human type Ⅱ collagens with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol, 1998, 16(6):329-338.
    [14] Qi Q, Yao LG, Liang ZS, et al. Production of human type Ⅱ collagen using an efficient baculovirus- silkworm multigene expression system. Mol Genet Genom, 2016, 291(6):2189-2198.
    [15] Tomita M, Ohkura N, Ito M, et al. Biosynthesis of recombinant human pro- α 1(Ⅲ) chains in a baculovirus expression system:production of disulphide-bonded and non-disulphide-bonded species containing full-length triple helices. Biochem J, 1995, 312(3):847-853.
    [16] Pihlajamaa T, Perälä M, Vuoristo MM, et al. Characterization of recombinant human type IX collagen. J Biol Chem, 1999, 274(32):22464-22468.
    [17] Snellman A, Keränen MR, Hägg PO, et al. Type XIII collagen forms homotrimers with three triple helical collagenous domains and its association into disulfide- bonded trimers is enhanced by prolyl 4-hydroxylase. J Biol Chem, 2000, 275(12):8936-8944.
    [18] Toman PD, Pieper F, Sakai N, et al. Production of recombinant human type I procollagen homotrimer in the mammary gland of transgenic mice. Transgenic Res, 1999, 8(6):415-427.
    [19] Hou YP, Guey LT, Wu T, et al. Intravenously administered recombinant human type Ⅶ collagen derived from Chinese hamster ovary cells reverses the disease phenotype in recessive dystrophic epidermolysis bullosa mice. J Invest Dermatol, 2015, 135(12):3060-3067.
    [20] Adachi T, Wang XB, Murata T, et al. Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng, 2010, 106(6):860-870.
    [21] Stein H, Wilensky M, Tsafrir Y, et al. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules, 2009, 10(9):2640-2645.
    [22] Zhang C, Baez J, Pappu KM, et al. Purification and characterization of a transgenic corn grain-derived recombinant collagen type I alpha 1. Biotechnol Prog, 2009, 25(6):1660-1668.
    [23] Eskelin K, Ritala A, Suntio T, et al. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. Plant Biotechnol J, 2009, 7(7):657-672.
    [24] Tang YP, Yang XL, Hang BJ, et al. Efficient production of hydroxylated human-like collagen via the co-expression of three key genes in Escherichia coli origami (DE3). Appl Biochem Biotechnol, 2016, 178(7):1458-1470.
    [25] Guo JQ, Luo YE, Fan DD, et al. Medium optimization based on the metabolic-flux spectrum of recombinant Escherichia coli for high expression of human-like collagen Ⅱ. Biotechnol Appl Biochem, 2010, 57(2):55-62.
    [26] 李瑛琦, 龚劲松, 许正宏, 等. Ⅲ型类人胶原蛋白在大肠杆菌重组表达及发酵制备. 微生物学通报, 2020, 47(12):4164-4171. Li YQ, Gong JS, Xu ZH, et al. Recombinant expression and fermentation of type Ⅲ human-like collagen in Escherichia coli. Microbiol China, 2020, 47(12):4164-4171(in Chinese).
    [27] Merle C, Perret S, Lacour T, et al. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens -mediated transient expression and in transgenic tobacco plant. FEBS Lett, 2002, 515(1/2/3):114-118.
    [28] Xu X, Gan QL, Clough RC, et al. Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase. BMC Biotechnol, 2011, 11:69.
    [29] Myllyharju J, Nokelainen M, Vuorela A, et al. Expression of recombinant human type Ⅰ- Ⅲ collagens in the yeast Pichia pastoris. Biochem Soc Trans, 2000, 28(4):353-357.
    [30] Nokelainen M, Tu H, Vuorela A, et al. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast, 2001, 18(9):797-806.
    [31] He J, Ma XX, Zhang FL, et al. New strategy for expression of recombinant hydroxylated human collagen α1(Ⅲ) chains in Pichia pastoris GS115. Biotechnol Appl Biochem, 2015, 62(3):293-299.
    [32] 刘斌. 巴氏毕赤酵母基因工程菌高密度发酵表达重组人源胶原蛋白[D]. 南京:南京理工大学, 2012. Liu B. High-density fermentation of genetically engineered Pichia pastoris expressing recombinant human-source collagen[D]. Nanjing:Nanjing University of Science and Technology, 2012(in Chinese).
    [33] 钱松, 李佳佳. 毕赤酵母生产重组人源Ⅱ型胶原蛋白单链的方法:CN, 110747198B. 2021-04-06. Qian S, Li JJ. Production of recombinant human type Ⅱ collagen single chain by Pichia pastoris. CN, 110747198B. 2021-04-06.
    [34] Toman PD, Chisholm G, McMullin H, et al. Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem, 2000, 275(30):23303-23309.
    [35] Chan SWP, Hung SP, Raman SK, et al. Recombinant human collagen and biomimetic variants using a de novo gene optimized for modular assembly. Biomacromolecules, 2010, 11(6):1460-1469.
    [36] De Bruin EC, Werten MWT, Laane C, et al. Endogenous prolyl 4-hydroxylation in Hansenula polymorpha and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Res, 2002, 1(4):291-298.
    [37] Rutschmann C, Baumann S, Cabalzar J, et al. Recombinant expression of hydroxylated human collagen in Escherichia coli. Appl Microbiol Biotechnol, 2014, 98(10):4445-4455.
    [38] Shi JJ, Ma XX, Gao Y, et al. Hydroxylation of human type Ⅲ collagen alpha chain by recombinant coexpression with a viral prolyl 4-hydroxylase in Escherichia coli. Protein J, 2017, 36(4):322-331.
    [39] Yu ZX, An B, Ramshaw JAM, et al. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol, 2014, 186(3):451-461.
    [40] Zhu CH, Fan DD, Wang YY. Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl, 2014, 34:393-401.
    [41] 段志广. 类人胶原蛋白止血海绵的性能研究[D]. 西安:西北大学, 2008. Duan ZG. The study on the properties of human-like collagen hematischesis sponge[D]. Xi'an:Northwest University, 2008(in Chinese).
    [42] Zhu CH, Lei H, Fan DD, et al. Novel enzymatic crosslinked hydrogels that mimic extracellular matrix for skin wound healing. J Mater Sci, 2018, 53(8):5909-5928.
    [43] 王皓. 类人胶原蛋白在大肠杆菌中的高效表达及其抗氧化活性研究[D]. 长春:吉林农业大学, 2013. Wang H. Highly expression of human-like collagen in E. coli and research of oxidation resistance[D]. Changchun:Jilin Agricultural University, 2013(in Chinese).
    [44] 杨霞. 一种重组人源胶原蛋白及其生产方法. CN, 103122027 B, 2014. 5. 14. Yang X. The invention relates to a recombinant human collagen and a production method thereof. CN, 103122027 B, 2014. 5. 14(in Chinese).
    [45] 徐立群. 类人胶原蛋白真核表达载体的构建及在毕赤酵母中的分泌表达[D]. 长春:吉林农业大学, 2013. Xu LQ. Construction of human-like collagen expression vector and its expression in Pichia pastoris[D]. Changchun:Jilin Agricultural University, 2013(in Chinese).
    [46] 杨树林, 高力虎, 李新柱, 等. 类人胶原蛋白基因、其不同重复数的同向串联基因、含有串联基因的重组质粒及制备方法:中国, 200610098297.5. 2013-04-17. Yang SL, Gao LH, Li XZ, et al. Human like collagen gene, homologous tandem gene with different repeat numbers, recombinant plasmid containing tandem gene and preparation method:CN, 200610098297.5. 2013-04-17(in Chinese).
    [47] 杨树林, 刘斌, 高力虎, 等. 一种重组人源胶原蛋白及其制备方法:中国, 201110327865.5. 2013-10-30. Yang SL, Liu B, Gao LH, et al. The invention relates to a recombinant human collagen and a preparation method thereof:CN, 201110327865.5. 2013-10-30(in Chinese).
    [48] 杨树林. 一种重组人源胶原蛋白生物海绵的制备方法:CN, 103435837B, 2014-11-05. Yang SL. A preparation method of recombinant human collagen biological sponge:CN, 103435837B, 2014-11-05(in Chinese).
    [49] 杨树林. 一种重组人源胶原蛋白生物海绵的制备方法:CN, L104292497B, 2017-08-25. Yang SL. A preparation method of recombinant human collagen biological sponge:CN, L104292497B, 2017-08-25(in Chinese).
    [50] 杨树林. 重组人源胶原蛋白及其医用纳米纤维膜:CN, 107556377B, 2021-06-29. Yang SL. Recombinant human collagen and its medical nanofiber membrane:CN, 107556377B, 2021-06-29(in Chinese).
    [51] 杨树林. 重组胶原蛋白及其医用水凝胶:CN, 111072769B, 2021-09-07. Yang SL. Recombinant collagen and its medical hydrogel:CN, 111072769B, 2021-09-07. CN, 111072769B, 2021-09-07(in Chinese).
    [52] 钱松, 王丽萍. 重组人源Ⅲ型胶原蛋白α1链及其应用:CN, 110606896B, 2021-02-26. Qian S, Wang LP. Recombinant human type Ⅲ collagen α 1 chain and its application:CN, 110606896B, 2021-02-26(in Chinese).
    [53] 侯增淼, 李晓颖, 李敏, 等. 重组人源性胶原蛋白的制备及表征. 生物工程学报, 2019, 35(2):319-326. Hou ZM, Li XY, Li M, et al. Preparation and characterization of recombinant human-source collagen. Chin J Biotech, 2019, 35(2):319-326(in Chinese).
    [54] Vaughn PR, Galanis M, Richards KM, et al. Production of recombinant hydroxylated human type III collagen fragment in Saccharomyces cerevisiae. DNA Cell Biol, 1998, 17(6):511-518.
    [55] Olsen DR, Leigh SD, Chang R, et al. Production of human type I collagen in yeast reveals unexpected new insights into the molecular assembly of collagen trimers. J Biol Chem, 2001, 276(26):24038-24043.
    [56] Shoseyov O, Posen Y, Grynspan F. Human collagen produced in plants:more than just another molecule. Bioengineered, 2014, 5(1):49-52.
    [57] Shilo S, Roth S, Amzel T, et al. Cutaneous wound healing after treatment with plant-derived human recombinant collagens HK, Hese KM, et al. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin). Blood, 1994, 83(5):1244-1250.
    [101] Arita M, Fertala J, Hou C, et al. Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II. PLoS One, 2017, 12(2):e0172068.
    [102] Arita M, Fertala J, Hou C, et al. Mechanisms of aberrant organization of growth plates in conditional transgenic mouse model of spondyloepiphyseal dysplasia associated with the R992C substitution in collagen II. Am J Pathol, 2015, 185(1):214-229.
    [103] O'Donnell BT, Ives CJ, Mohiuddin OA, et al. Beyond the present constraints that prevent a wide spread of tissue engineering and regenerative medicine approaches. Front Bioeng Biotechnol, 2019, 7:95.693-695.
    [62] Chen M, Costa FK, Lindvay CR, et al. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J Biol Chem, 2002, 277(3):2118-2124.
    [63] Fichard A, Tillet E, Delacoux F, et al. Human recombinant alpha1(V) collagen chain. Homotrimeric assembly and subsequent processing. J Biol Chem, 1997, 272(48):30083-30087.
    [64] Persikov AV, Ramshaw JAM, Kirkpatrick A, et al. Triple-helix propensity of hydroxyproline and fluoroproline:comparison of host-guest and repeating tripeptide collagen models. J Am Chem Soc, 2003, 125(38):11500-11501.
    [65] Brodsky B, Thiagarajan G, Madhan B, et al. Triple- helical peptides:an approach to collagen conformation, stability, and self-association. Biopolymers, 2008, 89(5):345-353.
    [66] Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem, 2019, 17(35):8031-8047.
    [67] Delsuc N, Uchinomiya S, Ojida A, et al. A host-guest system based on collagen-like triple-helix hybridization. Chem Commun (Camb), 2017, 53(51):6856-6859.
    [68] Setina CM, Haase JP, Glatz CE. Process integration for recovery of recombinant collagen type I α1 from corn seed. Biotechnol Prog, 2016, 32(1):98-107.
    [69] Du CL, Wang MQ, Liu JY, et al. Improvement of thermostability of recombinant collagen-like protein by incorporating a foldon sequence. Appl Microbiol Biotechnol, 2008, 79(2):195-202.
    [70] Steplewski A, Hintze V, Fertala A. Molecular basis of organization of collagen fibrils. J Struct Biol, 2007, 157(2):297-307.
    [71] Sieron AL, Louneva N, Fertala A. Site-specific interaction of bone morphogenetic protein 2 with procollagen II. Cytokine, 2002, 18(4):214-221.
    [72] Majsterek I, McAdams E, Adachi E, et al. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci, 2003, 12(9):2063-2072.
    [73] Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol, 2004, 344(4):993-1003.
    [74] 李阳, 朱晨辉, 范代娣. 重组胶原蛋白的绿色生物制造及其应用. 化工进展, 2021, 40(3):1262-1275. Li Y, Zhu CH, Fan DD. Green biological manufacture and application of recombinant collagen. Chem Ind Eng Prog, 2021, 40(3):1262-1275(in Chinese).
    [75] Deng AP, Yang Y, Du SM, et al. Electrospinning of in situ crosslinked recombinant human collagen peptide/chitosan nanofibers for wound healing. Biomater Sci, 2018, 6(8):2197-2208.
    [76] Chen L, Zhu CH, Fan DD, et al. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution:electrospun mechanism and biocompatibility. J Biomed Mater Res A, 2011, 99(3):395-409.
    [77] Zhu CH, Ma XX, Xian L, et al. Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Biomed Mater Eng, 2014, 24(6):1999-2005.
    [78] Builles N, Janin-Manificat H, Malbouyres M, et al. Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials, 2010, 31(32):8313-8322.
    [79] Yuan Y, Fan DD, Shen SH, et al. An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem Eng J, 2022, 433:133859.
    [80] Shen SH, Fan DD, Yuan Y, et al. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo- low level laser combination therapy of burn wounds. Chem Eng J, 2021, 426:130610.
    [81] Confalonieri D, La Marca M, Van Dongen EMWM, et al. An injectable recombinant collagen I peptide-based macroporous microcarrier allows superior expansion of C2C12 and human bone marrow-derived mesenchymal stromal cells and supports deposition of mineralized matrix. Tissue Eng Part A, 2017, 23(17/18):946-957.
    [82] Song X, Zhu CH, Fan DD, et al. A novel human-like collagen hydrogel scaffold with porous structure and sponge-like properties. Polymers, 2017, 9(12):638.
    [83] Fan H, Mi Y, Hui JF, et al. Cytocompatibility of human-like collagen/nano-hydroxyapatite porous scaffolds using cartilages. Biotechnology(Faisalabad), 2013, 12(2):99-103.
    [84] Xie JH, Fan DD. A high-toughness and high cell adhesion polyvinyl alcohol(PVA-hyaluronic acid (HA)-human-like collagen (HLC) composite hydrogel for cartilage repair. Int J Polym Mater Polym Biomater, 2020, 69(14):928-937.
    [85] Yang Y, Ritchie AC, Everitt NM. Using type III recombinant human collagen to construct a series of highly porous scaffolds for tissue regeneration. Colloids Surf B Biointerfaces, 2021, 208:112139.
    [86] Yang Y, Campbell Ritchie A, Everitt NM. Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering. Mater Sci Eng C Mater Biol Appl, 2021, 121:111846.
    [87] Umeyama R, Yamawaki T, Liu D, et al. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen Ther, 2020, 14:284-295.
    [88] Tytgat L, Dobos A, Markovic M, et al. High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications. Biomacromolecules, 2020, 21(10):3997-4007.
    [89] Hu K, Hu MM, Xiao YH, et al. Preparation recombination human-like collagen/fibroin scaffold and promoting the cell compatibility with osteoblasts. J Biomed Mater Res A, 2021, 109(3):346-353.
    [90] 杨树林. 重组胶原蛋白及其双层人造血管支架:CN, 201911068794.4, 2021.10.26. Yang SL. Recombinant collagen and its double-layer artificial vascular scaffold:CN, 201911068794.4, 2021.10.26.
    [91] 杨树林. 光交联重组胶原蛋白水凝胶、制备方法及其在3D生物打印中的应用. CN, 110790950A,2020.02.14. Yang SL. Photo crosslinking recombinant collagen hydrogel, preparation method and its application in 3D biological printing. CN,110790950A, 2020.02.14(in Chinese).
    [92] Olavesen AH. Connective tissue and its heritable disorders. Molecular, genetic and medical aspects. FEBS Lett, 1993, 335(1):141.
    [93] Lowell HB, Michael BT, Raymond RP, et al. Collagen IV replacement:EP, 3171889A4, 2018.03.14
    [94] Bardhan A, Bruckner-Tuderman L, Chapple ILC, et al. Epidermolysis bullosa. Nat Rev Dis Primers, 2020, 6:78.
    [95] Has C, South A, Uitto J. Molecular therapeutics in development for epidermolysis bullosa:update 2020. Mol Diagn Ther, 2020, 24(3):299-309.
    [96] Remington J, Wang XY, Hou YP, et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther, 2009, 17(1):26-33.
    [97] A Phase 1/2 Trial of PTR-01 in Adult Patients with Recessive Dystrophic Epidermolysis Bullosa (EB/RD). Available online:https://ClinicalTrials.gov/show/NCT03752905(2020-10-20). https://clinicaltrials.gov/show/NCT03752905
    [98] Supp DM, Hahn JM, Combs KA, et al. Collagen VII expression is required in both keratinocytes and fibroblasts for anchoring fibril formation in bilayer engineered skin substitutes. Cell Transplant, 2019, 28(9/10):1242-1256.
    [99] Kühl T, Mezger M, Hausser I, et al. Collagen VII half-life at the dermal-epidermal junction zone:implications for mechanisms and therapy of genodermatoses. J Invest Dermatol, 2016, 136(6):1116-1123.
    [100] Saelman EU, Nieuwenhui
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

傅容湛,范代娣,杨婉娟,陈亮,曲词,杨树林,徐丽明. 重组胶原蛋白的产业发展历程和生物医学应用前景展望[J]. 生物工程学报, 2022, 38(9): 3228-3242

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-22
  • 录用日期:2022-04-13
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6019859位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司