PEG修饰有效提高热休克蛋白gp96抑制性多肽抗乳腺癌的功能
作者:
基金项目:

中国科学院佛山产业技术研究院产业创新团队资助(81761128002);中关村前沿技术成果转化和产业化项目


PEGylation effectively improves anti-breast cancer efficiency of heat shock protein gp96 inhibitory polypeptide
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    乳腺癌是女性恶性肿瘤中发病率最高的肿瘤,严重威胁女性生命健康。其中三阴性乳腺癌因其特殊的生理学特点,成为乳腺癌中预后最差的亚型,因此急需寻找新的靶点进行治疗来提高患者预后及生存率。多项研究表明,热休克蛋白gp96在多种癌细胞的膜表面过表达,且胞膜gp96与乳腺癌的恶性程度与不良预后密切相关,因此其可能是乳腺癌治疗的新靶点。前期研究根据gp96的结构,开发一种靶向胞膜gp96 ATP结合区的α螺旋肽p37。虽然p37多肽作用位点专一,但其在体内容易被降解,因此本研究将多肽的N端或C端分别偶联PEG2000或PEG5000,得到4个具有抑瘤功能的PEG多肽:mPEG2000CY、mPEG5000CY、mPEG2000LC和mPEG5000LC。它们可以抑制乳腺癌细胞SK-BR-3的增殖和侵袭,其中抑制效果最明显的是mPEG2000CY。经测定,mPEG2000CY在体内的半衰期较多肽p37明显延长,且有效抑制三阴性乳腺癌MDA-MB-231小鼠移植瘤的生长。这为研发新型抗乳腺癌尤其是三阴性乳腺癌的靶向药物提供了依据。

    Abstract:

    Breast cancer is the most common tumor in female, which seriously threatens the health of women. Triple-negative breast cancer is a subtype with the worst prognosis because of its special physiological characteristics and lack of targeted drugs. Therefore, it is urgent to develop new targeted treatments to improve the prognosis and survival rate of the patients. Previous studies have shown that heat shock protein gp96 is expressed on the membrane of a variety of cancer cells but not on the normal cells. Cell membrane gp96 levels are closely related to the poor prognosis of breast cancer, which may serve as a new target for breast cancer treatment. Based on the structure of gp96, we designed an α-helical peptide p37 that specifically targeting the ATP binding region of gp96. To improve the stability and decrease the degradation of the peptide, the N-terminus or C-terminus of p37 was coupled to PEG2000 or PEG5000 respectively, and four PEGylated polypeptides were obtained:mPEG2000CY, mPEG5000CY, mPEG2000LC, and mPEG5000LC. The PEGylated polypeptides inhibited the proliferation and invasion of breast cancer cell SK-BR-3, among which mPEG2000CY showed the most significant inhibitory effect. The half-life of mPEG2000CY in vivo was significantly longer than p37, and it effectively inhibited the growth of xenografted tumors of triple-negative breast cancer MDA-MB-231. The results provide a basis for the development of new targeted drugs against breast cancer, especially the triple-negative breast cancer.

    参考文献
    [1] 史润泽, 李志高. 三阴性乳腺癌各亚型精准医疗策略研究进展. 实用肿瘤学杂志, 2021, 35(6):529-533. Shi RZ, Li ZG. Research progress of precision medical strategy for different subtypes of triple negative breast cancer. Pract Oncol J, 2021, 35(6):529-533(in Chinese).
    [2] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2):115-132.
    [3] 何馨彤, 王上, 张紫筝, 等. HER2阳性乳腺癌靶向治疗药物的临床研究进展. 药物评价研究, 2021, 44(12):2697-2704. He XT, Wang S, Zhang ZZ, et al. Clinical research progress of targeted therapy for HER2-positive breast cancer. Drug Eval Res, 2021, 44(12):2697-2704(in Chinese).
    [4] 张爱玲, 温润耀. 乳腺癌的诊治进展. 当代医学, 2021, 27(34):1-4. Zhang AL, Wen RY. Progresses in diagnosis and treatment of breast cancer. Contemp Med, 2021, 27(34):1-4(in Chinese).
    [5] Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer:challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol, 2016, 13(11):674-690.
    [6] 毛婷, 毛玲, 管晓翔. PD-1/PD-L1免疫检查点抑制剂治疗三阴性乳腺癌的研究进展. 东南国防医药, 2021, 23(5):511-515. Mao T, Mao L, Guan XX. Research progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple negative breast cancer. Mil Med J Southeast China, 2021, 23(5):511-515(in Chinese).
    [7] Rigiracciolo DC, Nohata N, Lappano R, et al. IGF-1/IGF-1R/FAK/YAP transduction signaling prompts growth effects in triple-negative breast cancer (TNBC) cells. Cells, 2020, 9(4):1010.
    [8] 杨小平, 杨哲, 崔洁, 等. 三阴性乳腺癌的分子靶向治疗进展. 海南医学, 2014, 25(24):3675-3677. Yang XP, Yang Z, Cui J, et al. Progress of molecular targeted therapy for triple negative breast cancer. Hainan Med J, 2014, 25(24):3675-3677(in Chinese).
    [9] 董国雷, 赵伟鹏, 佟仲生. 三阴性乳腺癌靶向治疗进展. 中国肿瘤临床, 2019, 46(12):649-652. Dong GL, Zhao WP, Tong ZS. Advances in targeted therapy for triple-negative breast cancer. Chin J Clin Oncol, 2019, 46(12):649-652(in Chinese).
    [10] 高熙, 李三强. 热休克蛋白Gp96在肝癌、肝纤维化、乙型肝炎中作用的研究进展. 肿瘤基础与临床, 2019, 32(6):550-552. Gao X, Li SQ. Research progress on the role of heat shock protein Gp96 in liver cancer, liver fibrosis and hepatitis B. J Basic Clin Oncol, 2019, 32(6):550-552(in Chinese).
    [11] Liu ES, Lee AS. Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res, 1991, 19(19):5425-5431.
    [12] Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res, 2010, 107(5):579-591.
    [13] Wu B, Chu XY, Feng C, et al. Heat shock protein gp96 decreases p53 stability by regulating Mdm2 E3 ligase activity in liver cancer. Cancer Lett, 2015, 359(2):325-334.
    [14] Rachidi S, Sun SL, Li ZH. Endoplasmic reticulum heat shock protein gp96/grp94 is a pro-oncogenic chaperone, not a tumor suppressor. Hepatology, 2015, 61(5):1766-1767.
    [15] Robert J, Ménoret A, Cohen N. Cell surface expression of the endoplasmic reticular heat shock protein gp96 is phylogenetically conserved. J Immunol, 1999, 163(8):4133-4139.
    [16] Altmeyer A, Maki RG, Feldweg AM, et al. Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer, 1996, 69(4):340-349.
    [17] Yan PR, Patel HJ, Sharma S, et al. Molecular stressors engender protein connectivity dysfunction through aberrant N-glycosylation of a chaperone. Cell Rep, 2020, 31(13):107840.
    [18] Kim JW, Cho YB, Lee S. Cell surface GRP94 as a novel emerging therapeutic target for monoclonal antibody cancer therapy. Cells, 2021, 10(3):670.
    [19] Lee JH, Kang KW, Kim JE, et al. Differential expression of heat shock protein 90 isoforms in small cell lung cancer. Int J Clin Exp Pathol, 2015, 8(8):9487-9493.
    [20] Duan XF, Iwanowycz S, Ngoi S, et al. Molecular chaperone GRP94/GP96 in cancers:oncogenesis and therapeutic target. Front Oncol, 2021, 11:629846.
    [21] Dejeans N, Glorieux C, Guenin S, et al. Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration:implications for tumor recurrence. Free Radic Biol Med, 2012, 52(6):993-1002.
    [22] Langer R, Feith M, Siewert JR, et al. Expression and clinical significance of glucose regulated proteins GRP78(BiP) and GRP94(GP96) in human adenocarcinomas of the esophagus. BMC Cancer, 2008, 8:70.
    [23] Sanz-Pamplona R, Aragüés R, Driouch K, et al. Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am J Pathol, 2011, 179(2):564-579.
    [24] Smid M, Wang YX, Zhang Y, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res, 2008, 68(9):3108-3114.
    [25] Li X, Sun L, Hou JW, et al. Cell membrane gp96 facilitates HER2 dimerization and serves as a novel target in breast cancer. Int J Cancer, 2015, 137(3):512-524.
    [26] Hou JW, Deng MM, Li X, et al. Chaperone gp96 mediates ER-α36 cell membrane expression. Oncotarget, 2015, 6(31):31857-31867.
    [27] Li X, Wang BZ, Liu WW, et al. Blockage of conformational changes of heat shock protein gp96 on cell membrane by a α-helix peptide inhibits HER2 dimerization and signaling in breast cancer. PLoS One, 2015, 10(4):e0124647.
    [28] Werle M, Bernkop-Schnürch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids, 2006, 30(4):351-367.
    [29] Davis FF. The origin of pegnology. Adv Drug Deliv Rev, 2002, 54(4):457-458.
    [30] Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J, 2010, 5(1):113-128.
    [31] 杨旭, 贡济宇. 蛋白多肽类药物聚乙二醇化修饰研究进展. 中国当代医药, 2012, 19(31):16-17, 20. Yang X, Gong JY. Research progress on PEGylation of protein and peptide drugs. China Mod Med, 2012, 19(31):16-17, 20(in Chinese).
    [32] 庞丽然, 贺丞, 魏敬双, 等. 蛋白多肽类药物长效化技术研究策略. 生物技术进展, 2021, 11(3):304-310. Pang LR, He C, Wei JS, et al. Research strategy on long-acting technology of protein and peptide drugs. Curr Biotechnol, 2021, 11(3):304-310(in Chinese).
    [33] Hou JW, Li X, Li CF, et al. Plasma membrane gp96 enhances invasion and metastatic potential of liver cancer via regulation of uPAR. Mol Oncol, 2015, 9(7):1312-1323.
    [34] 刘洪涛, 尚明美, 宋海峰. 聚乙二醇化修饰对蛋白多肽药物药代动力学的影响. 生物技术通讯, 2005, 16(5):577-579. Liu HT, Shang MM, Song HF. The effects of pegylation on the pharmacokinetics of polypeptide. Lett Biotechnol, 2005, 16(5):577-579(in Chinese).
    [35] Duerfeldt AS, Peterson LB, Maynard JC, et al. Development of a Grp94 inhibitor. J Am Chem Soc, 2012, 134(23):9796-9804.
    [36] Wu BX, Hong F, Zhang YL, et al. GRP94/gp96 in cancer:biology, structure, immunology, and drug development. Adv Cancer Res, 2016, 129:165-190.
    [37] Patel PD, Yan PR, Seidler PM, et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol, 2013, 9(11):677-684.
    [38] Patel HJ, Patel PD, Ochiana SO, et al. Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94. J Med Chem, 2015, 58(9):3922-3943.
    [39] Hua YP, White-Gilbertson S, Kellner J, et al. Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. Clin Cancer Res, 2013, 19(22):6242-6251.
    [40] Rothan HA, Zhong YW, Sanborn MA, et al. Small molecule grp94 inhibitors block dengue and zika virus replication. Antiviral Res, 2019, 171:104590.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘璐璐,高建伟,李长菲,武岳,孟颂东. PEG修饰有效提高热休克蛋白gp96抑制性多肽抗乳腺癌的功能[J]. 生物工程学报, 2022, 38(9): 3363-3378

复制
分享
文章指标
  • 点击次数:277
  • 下载次数: 1309
  • HTML阅读次数: 812
  • 引用次数: 0
历史
  • 收稿日期:2022-01-26
  • 录用日期:2022-04-19
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6081178位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司