APRT缺陷型CHO细胞系的建立及其重组蛋白表达能力评价
作者:
基金项目:

国家自然科学基金(32071468);河南省高等学校重点科研项目(22A310009)


Development of an APRT-deficient CHO cell line and its ability of expressing recombinant protein
Author:
  • FENG Yingying

    FENG Yingying

    School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIAO Mengke

    XIAO Mengke

    School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Jiangtao

    LU Jiangtao

    School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xiaoyin

    WANG Xiaoyin

    Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China;School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHAI Yurong

    CHAI Yurong

    Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China;Department of Histology and Embryology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Tianyun

    WANG Tianyun

    Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China;School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIA Yanlong

    JIA Yanlong

    School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System/Henan Engineering Technology Research Center of Biopharmaceutical Innovation, Xinxiang 453003, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞是生产复杂重组药物蛋白的首选宿主细胞,腺嘌呤磷酸核糖转移酶(adenine phosphoribosyltransferase,APRT)催化腺嘌呤与磷酸核糖缩合形成腺苷一磷酸,是嘌呤生物合成步骤中的关键酶。采用基因编辑技术敲除CHO细胞中aprt基因,验证获得的APRT缺陷型CHO细胞系的生物学特性;构建两种真核表达载体:对照载体(含有目的基因增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和弱化载体(含有启动子和起始密码子突变的aprt弱化表达盒及EGFP),分别转染APRT缺陷型和野生型CHO细胞并筛选获得稳定转染的细胞池;重组CHO细胞传代培养60代并用流式细胞术检测EGFP表达的平均荧光强度,并比较不同实验组重组蛋白EGFP的表达稳定性。PCR扩增和测序结果表明,CHO细胞aprt基因成功敲除;获得的APRT缺陷型CHO细胞系在细胞形态、生长增殖、倍增时间等生物学特性方面与野生CHO细胞无显著差异。目的蛋白瞬时表达结果表明,与野生型CHO细胞相比,转染对照载体和弱化载体的APRT缺陷型CHO细胞系中EGFP的表达分别提高了42%±6%和56%±9%;特别是长期传代培养时,转染弱化载体的APRT缺陷型细胞中EGFP表达量显著高于野生型CHO细胞(P<0.05);构建的基于APRT缺陷型CHO细胞系能够明显提高重组蛋白的长期表达稳定性。研究结果为建立高效稳定的CHO细胞表达系统提供了一种有效的细胞工程策略。

    Abstract:

    Chinese hamster ovary (CHO) cells are the preferred host cells for the production of complex recombinant therapeutic proteins. Adenine phosphoribosyltransferase (APRT) is a key enzyme in the purine biosynthesis step that catalyzes the condensation of adenine with phosphoribosylate to form adenosine phosphate AMP. In this study, the gene editing technique was used to knock out the aprt gene in CHO cells. Subsequently, the biological properties of APRT-KO CHO cell lines were investigated. A control vector expressed an enhanced green fluorescent protein (EGFP) and an attenuation vector (containing an aprt-attenuated expression cassette and EGFP) were constructed and transfected into APRT-deficient and wild-type CHO cells, respectively. The stable transfected cell pools were subcultured for 60 generations and the mean fluorescence intensity of EGFP in the recombinant CHO cells was detected by flow cytometry to analyze the EGFP expression stability. PCR amplification and sequencing showed that the aprt gene in CHO cell was successfully knocked out. The obtained APRT-deficient CHO cell line had no significant difference from the wild-type CHO cells in terms of cell morphology, growth, proliferation, and doubling time. The transient expression results indicated that compared with the wild-type CHO cells, the expression of EGFP in the APRT-deficient CHO cells transfected with the control vector and the attenuation vector increased by 42%±6% and 56%±9%, respectively. Especially, the EGFP expression levels in APRT-deficient cells transfected with the attenuation vector were significantly higher than those in wild-type CHO cells (P<0.05). The findings suggest that the APRT-deficient CHO cell line can significantly improve the long-term expression stability of recombinant proteins. This may provide an effective cell engineering strategy for establishing an efficient and stable CHO cell expression system.

    参考文献
    [1] Zhu J, Hatton D. New mammalian expression systems. Adv Biochem Eng Biotechnol, 2018, 165:9-50.
    [2] Omasa T, Onitsuka M, Kim WD. Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr Pharm Biotechnol, 2010, 11(3):233-240.
    [3] Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol, 2020, 104(13):5673-5688.
    [4] Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol, 2018, 36(12):1136-1145.
    [5] Wells E, Robinson AS. Cellular engineering for therapeutic protein production:product quality, host modification, and process improvement. Biotechnol J, 2017, 12(1), DOI:10.1002/biot.201600105.
    [6] Davies SL, Lovelady CS, Grainger RK, et al. Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng, 2013, 110(1):260-274.
    [7] Reams AB, Roth JR. Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol, 2015, 7(2):a016592.
    [8] Fischer S, Handrick R, Otte K. The art of CHO cell engineering:a comprehensive retrospect and future perspectives. Biotechnol Adv, 2015, 33(8):1878-1896.
    [9] Noh SM, Shin S, Lee GM. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Sci Rep, 2018, 8(1):5361.
    [10] Lee JH, Park JH, Park SH, et al. Co-amplification of EBNA-1 and PyLT through dhfr-mediated gene amplification for improving foreign protein production in transient gene expression in CHO cells. Appl Microbiol Biotechnol, 2018, 102(11):4729-4739.
    [11] Omasa T. Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng, 2002, 94(6):600-605.
    [12] Hausmann R, Chudobová I, Spiegel H, et al. Proteomic analysis of CHO cell lines producing high and low quantities of a recombinant antibody before and after selection with methotrexate. J Biotechnol, 2018, 265:65-69.
    [13] Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems. Crit Rev Biotechnol, 2020, 40(7):1035-1043.
    [14] Bandaranayake AD, Almo SC. Recent advances in mammalian protein production. FEBS Lett, 2014, 588(2):253-260.
    [15] Ho SCL, Mariati, Yeo JHM, et al. Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol, 2015, 57(2):138-144.
    [16] Valaperta R, Rizzo V, Lombardi F, et al. Adenine phosphoribosyltransferase (APRT) deficiency:identification of a novel nonsense mutation. BMC Nephrol, 2014, 15(5):102.
    [17] Silva CHTP, Silva M, Iulek J, et al. Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism. J Biomol Struct Dyn, 2008, 25(6):589-597.
    [18] Rose JA, Yates PA, Simpson J, et al. Biallelic methylation and silencing of mouse Aprt in normal kidney cells. Cancer Res, 2000, 60(13):3404-3408.
    [19] Yates PA, Burman R, Simpson J, et al. Silencing of mouse Aprt is a gradual process in differentiated cells. Mol Cell Biol, 2003, 23(13):4461-4470.
    [20] Stambrook PJ, Shao C, Stockelman M, et al. APRT:a versatile in vivo resident reporter of local mutation and loss of heterozygosity. Environ Mol Mutagen, 1996, 28(4):471-482.
    [21] 卢燎勋, 张黎琛, 梁银明等. 一种通过CRISPR/Cas9系统快速获得大片段缺失的细胞系基因敲除方法:中国, CN107435051B, 2020-06-02. Lu LX, Zhang LC, Liang YM, et al. A method for rapid gene knockout in cell lines with large fragment deletions obtained by CRISPR/Cas9 system:CN, CN107435051B. 2020-06-02(in Chinese).
    [22] Lin YF, Dion V, Wilson JH. A novel selectable system for detecting expansion of CAG.CTG repeats in mammalian cells. Mutat Res, 2005, 572(1/2):123-131.
    [23] 白银, 王琰, 张海荣, 周丽君, 吕英谦, 俞莉章. 通过载体DHFR基因的弱化提高抗体在CHO细胞中的表达. 细胞与分子免疫学杂志, 2003, 19(1):62-64, 67. Bai Y, Wang Y, Zhang HR, et al. Significantly improvement of antibody expression level in CHO cells through downregulation of the DHFR gene in expression vector. J Cell Mol Immunol, 2003, 19(1):62-64, 67(in Chinese).
    [24] 陈勇, 李萍, 陆俭, 等. 弱化二氢叶酸还原酶基因增进人神经生长因子β亚基在CHO细胞中的表达. 中国生物制品学杂志, 2012, 25(12):1591-1593, 1598. Chen Y, Li P, Lu J, et al. Attenuated dihydrofolate reductase gene enhances expression of β subunit of human nerve growth factor in CHO cells. Chin J Biol, 2012, 25(12):1591-1593, 1598(in Chinese).
    [25] Bailey LA, Hatton D, Field R, et al. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng, 2012, 109(8):2093-2103.
    [26] Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng, 2003, 81(6):631-639.
    [27] Li HW, Chen KM, Wang Z, et al. Genetic analysis of the clonal stability of Chinese hamster ovary cells for recombinant protein production. Mol Biosyst, 2016, 12(1):102-109.
    [28] O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins:a review of the critical steps in their biomanufacturing. Biotechnol Adv, 2020, 43:107552.
    [29] Tomanek I, Grah R, Lagator M, et al. Gene amplification as a form of population-level gene expression regulation. Nat Ecol Evol, 2020, 4(4):612-625.
    [30] Noguchi C, Araki Y, Miki D, et al. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS One, 2012, 7(12):e52990.
    [31] Kondo M, Yamaoka T, Honda S, et al. The rate of cell growth is regulated by purine biosynthesis via ATP production and G(1) to S phase transition. J Biochem, 2000, 128(1):57-64.
    [32] Félix AJ, Ciudad CJ, Noé V. Correction of the aprt gene using repair-polypurine reverse hoogsteen hairpins in mammalian cells. Mol Ther Nucleic Acids, 2020, 19:683-695.
    [33] Costa AR, Rodrigues ME, Henriques M, et al. Evaluation of the OSCAR system for the production of monoclonal antibodies by CHO-K1 cells. Int J Pharm, 2012, 430(1/2):42-46.
    [34] Tian J, He Q, Oliveira C, et al. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Eng Life Sci, 2020, 20(3/4):112-125.
    [35] Shen CC, Sung LY, Lin SY, et al. Enhancing protein production yield from Chinese hamster ovary cells by CRISPR interference. ACS Synth Biol, 2017, 6(8):1509-1519.
    [36] Barrangou R, Birmingham A, Wiemann S, et al. Advances in CRISPR-Cas9 genome engineering:lessons learned from RNA interference. Nucleic Acids Res, 2015, 43(7):3407-3419.
    [37] Sacco SA, Tuckowski AM, Trenary I, et al. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells. Biotechnol Bioeng, 2022, 119(7):1712-1727.
    [38] Tharmalingam T, Barkhordarian H, Tejeda N, et al. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol Prog, 2018, 34(3):613-623.
    [39] Vcelar S, Jadhav V, Melcher M, et al. Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting. Biotechnol Bioeng, 2018, 115(1):165-173.
    [40] Turilova VI, Goryachaya TS, Yakovleva TK. Chinese hamster ovary cell line DXB-11:chromosomal instability and karyotype heterogeneity. Mol Cytogenet, 2021, 14(1):11.
    [41] Baik JY, Lee KH. Growth rate changes in CHO host cells are associated with karyotypic heterogeneity. Biotechnol J, 2018, 13(3):e1700230.
    [42] Baik JY, Lee KH. A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level. Biotechnol Bioeng, 2017, 114(5):1045-1053.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯莹莹,肖梦珂,路江涛,王小引,柴玉荣,王天云,贾岩龙. APRT缺陷型CHO细胞系的建立及其重组蛋白表达能力评价[J]. 生物工程学报, 2022, 38(9): 3453-3465

复制
分享
文章指标
  • 点击次数:241
  • 下载次数: 1240
  • HTML阅读次数: 1380
  • 引用次数: 0
历史
  • 收稿日期:2022-03-15
  • 录用日期:2022-06-07
  • 在线发布日期: 2022-09-24
  • 出版日期: 2022-09-25
文章二维码
您是第6019859位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司