人体肠道4 644株代表菌次级代谢产物生物合成基因簇挖掘与耐药及毒力基因分析
作者:
基金项目:

湖南省自然科学基金杰出青年基金(2020JJ2016);国家自然科学基金区域创新发展联合基金(U21A20411)


Mining of gene clusters for biosynthesis of secondary metabolites and analysis of genes encoding antibiotic resistance and virulence in 4 644 representative human gut strains
Author:
  • YIN Yeshi

    YIN Yeshi

    Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Nanling Plant Resources Research and Development Hunan Engineering Research Center, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Hu

    CHEN Hu

    Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Nanling Plant Resources Research and Development Hunan Engineering Research Center, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Meihong

    ZHANG Meihong

    State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CAO Linyan

    CAO Linyan

    Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Nanling Plant Resources Research and Development Hunan Engineering Research Center, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Huahai

    CHEN Huahai

    Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Nanling Plant Resources Research and Development Hunan Engineering Research Center, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了更好地从肠道微生物组中挖掘新的次级代谢产物、了解肠道微生物组编码的抗生素耐药基因和毒力因子情况,本研究基于4 644株人体肠道微生物代表菌的基因组序列,对其编码的次级代谢产物基因簇、抗生素耐药基因和毒力因子进行了预测分析。经antiSMASH预测分析发现,超过60%的代表菌编码至少1个次级代谢产物基因簇,并从8个未可培养菌中发现了8个潜在的新颖次级代谢产物基因簇。人体肠道中的次级代谢产物主要由梭菌纲(Clostridia)、芽孢杆菌纲(Bacilli)、γ-变形菌纲(Gammaproteobacteria)、拟杆菌纲(Bacteroidia)、放线菌纲(Actinobacteria)和厚壁菌纲(Negativicutes)6类细菌编码的非核糖体多肽合成酶(nonribosomal peptide synthetase,NRPS)、细菌素、芳基多烯类化合物、萜烯、β-丙内酯、NRPS-样蛋白组成。经PathoFact预测分析发现,抗生素耐药基因和毒力因子在代表性菌株中分布广泛,但潜在病原菌编码频率更高。潜在病原菌中编码外膜蛋白、PapC N-端结构域、PapC C-端结构域、肽酶M16失活结构域等分泌型毒素和硝基还原酶家族、AcrB/AcrD/AcrF家族、PLD-样结构域、Cupin结构域、假定溶血素、S24-样肽酶、磷酸转移酶家族、内切核酸酶/外切核酸酶/磷酸酶家族、乙二醛酶/博莱霉素抗性等非分泌型毒素的频率较高。该研究将为进一步从肠道微生物组中挖掘新的微生物天然产物、了解肠道微生物的定殖与感染机制,为肠道微生物相关疾病提供靶向防治策略等奠定基础。

    Abstract:

    Genome sequences of 4 644 representative strains from human gut microbiota were analyzed to mine gene clusters for biosynthesis of novel secondary metabolites, as well as genes encoding antibiotic resistance and virulence factors. AntiSMASH analysis showed that more than 60% of the representative strains encoded at least one secondary metabolite gene cluster, and 8 potential novel secondary metabolite gene clusters were identified from 8 unculturable bacteria. The secondary metabolite gene clusters in human intestine are mainly composed of nonribosomal peptide synthetase (NRPS), bacteriocin, arylpolyene, terpene, betalactone and NRPS like gene clusters distributed in Clostridia, Bacilli, Gammaproteobacteria, Bacteroidia, Actinobacteria and Negativicutes. PathoFact analysis showed that genes encoding antibiotic resistance and virulence factors are widely distributed in representative strains, but the frequency encoded by potential pathogens is significantly higher than that of non-potential pathogens. The frequency of genes encoding secretory toxins such as outer membrane protein, PapC N-terminal domain, PapC C-terminal domain, peptidase M16 inactive domain, and non-secretory toxins such as nitroreductase family, AcrB/AcrD/AcrF family, PLD-like domain, Cupin domain, putative hemolysin, S24-like peptidase, phosphotransferase enzyme family, endonuclease/exonuclease/phosphatase family, glyoxalase/bleomycin resistance was high in potential pathogens. This study may facilitate mining new microbial natural products from the intestinal microbiome, understanding the colonization and infection mechanism of intestinal microorganisms, and providing targeted prevention and treatment of intestinal microbial related diseases.

    参考文献
    [1] Sukmarini L. Recent advances in discovery of lead structures from microbial natural products:genomics-and metabolomics-guided acceleration. Molecules, 2021, 26(9):2542.
    [2] Li JH, Jia HJ, Cai XH, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol, 2014, 32(8):834-841.
    [3] Kalkreuter E, Pan GH, Cepeda AJ, et al. Targeting bacterial genomes for natural product discovery. Trends Pharmacol Sci, 2020, 41(1):13-26.
    [4] Sharma AK, Dhasmana N, Dubey N, et al. Bacterial virulence factors:secreted for survival. Indian J Microbiol, 2017, 57(1):1-10.
    [5] Pakbin B, Brück WM, Rossen JWA. Virulence factors of enteric pathogenic Escherichia coli:a review. Int J Mol Sci, 2021, 22(18):9922.
    [6] 尹业师, 陈华海, 曹林艳, 等. 细菌耐药性应对策略研究进展. 生物工程学报, 2018, 34(8):1346-1360. Yin YS, Chen HH, Cao LY, et al. Progress in strategies to combat antimicrobial resistance. Chin J Biotech, 2018, 34(8):1346-1360(in Chinese).
    [7] Almeida A, Nayfach S, Boland M, et al. A unified catalog of 204, 938 reference genomes from the human gut microbiome. Nat Biotechnol, 2021, 39(1):105-114.
    [8] Seemann T. Prokka:rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14):2068-2069.
    [9] Blin K, Shaw S, Kloosterman AM, et al. antiSMASH 6.0:improving cluster detection and comparison capabilities. Nucleic Acids Res, 2021, 49(W1):W29-W35.
    [10] De Nies L, Lopes S, Busi SB, et al. PathoFact:a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 2021, 9(1):49.
    [11] Traoré SI, Bilen M, Cadoret F, et al. Study of human gastrointestinal microbiota by culturomics in Africa. Med Sante Trop, 2019, 29(4):366-370.
    [12] Forster SC, Kumar N, Anonye BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol, 2019, 37(2):186-192.
    [13] Zou YQ, Xue WB, Luo GW, et al. 1520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol, 2019, 37(2):179-185.
    [14] Raymond F, Boissinot M, Ouameur AA, et al. Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome, 2019, 7(1):56.
    [15] Tierney BT, Tan YX, Yang Z, et al. Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research. PLoS Biol, 2022, 20(3):e3001556.
    [16] De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS, 2010, 107(33):14691-14696.
    [17] Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346):174-180.
    [18] Jia BL, Han X, Kim KH, et al. Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol, 2022, 40(2):240-254.
    [19] Wang LL, Ravichandran V, Yin YL, et al. Natural products from mammalian gut microbiota. Trends Biotechnol, 2019, 37(5):492-504.
    [20] Bhattarai K, Bhattarai K, Baral B. Next-generation microbial drugs developed from microbiome's natural products. Adv Genet, 2021, 108:341-382.
    [21] Ma Y, Guo ZY, Xia BB, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol, 2022, 40(6):921-931.
    [22] Huang R, Yan L, Lei YH. The gut microbial-derived metabolite trimethylamine N-oxide and atrial fibrillation:relationships, mechanisms, and therapeutic strategies. Clin Interv Aging, 2021, 16:1975-1986.
    [23] Hu YF, Yang X, Qin JJ, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun, 2013, 4:2151.
    [24] Hu YF, Yang X, Li J, et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol, 2016, 82(22):6672-6681.
    [25] Hu YF, Gao GF, Zhu BL. The antibiotic resistome:gene flow in environments, animals and human beings. Front Med, 2017, 11(2):161-168.
    [26] Shuai ML, Zhang GQ, Zeng FF, et al. Human gut antibiotic resistome and progression of diabetes. Adv Sci (Weinh), 2022, 9(11):e2104965.
    [27] Wu HJ, Wang AHJ, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol, 2008, 12(1):93-101.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尹业师,陈浒,张美红,曹林艳,陈华海. 人体肠道4 644株代表菌次级代谢产物生物合成基因簇挖掘与耐药及毒力基因分析[J]. 生物工程学报, 2022, 38(10): 3682-3694

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-21
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司