山田胶锈菌和亚洲胶锈菌吸器的比较转录组分析
作者:
基金项目:

国家自然科学基金(31870628)


Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为防止锈病的传播,培育抗病品种以及减少产量损失,基于山田胶锈菌(Gymnosporangium yamadae)和亚洲胶锈菌(Gymnosporangium asiaticum)吸器阶段的转录组差异分析揭示了胶锈菌侵染寄主植物时的专化性选择机制。对山田胶锈菌和亚洲胶锈菌担孢子侵染寄主时形成的吸器进行转录组测序,分别获得了21 213条和13 015条单基因(unigenes);从山田胶锈菌和亚洲胶锈菌中分别选择5个基因进行实时荧光定量PCR验证,显示其表达情况与转录组分析结果基本一致,表明转录组分析结果可靠;用Nr、GO、KEGG、KOG等7个数据库进行基因功能注释和富集分析,发现两种胶锈菌的基因主要富集在细胞进程、翻译、代谢相关通路;使用SignalP和TMHMM在线网站以及dbCAN、BLAST、HMMER等软件分析显示山田胶锈菌和亚洲胶锈菌吸器中的候选效应蛋白分别有343个(2.51%)和175个(2.79%),其中分别含有14个和5个蛋白酶,10个和3个脂酶;利用OrthoFinder、BLSAT和KaKs Calculator软件分析了两种胶锈菌的进化关系,在一对一同源基因中,比对率大于82%的基因对被认为处于保守选择,有12.37%的基因对处于正向选择,在亚洲胶锈菌中有5个效应子处于进化选择,其中1个为脂酶。山田胶锈菌和亚洲胶锈菌表达基因富集中没有发现显著差异,表明虽然其种间存在典型的寄主选择性,但吸器所涉及的生物学过程相对保守,而两个物种之间存在较低的蛋白相似性,说明它们受到较大的寄主选择压力而产生了明显的进化分歧,这可能与对寄主的特异性选择机制相关。在吸器阶段,胶锈菌可能可以利用植物的脂质作为能量来源,而效应子的主要目的可能是调控植物的生理进程等而不是直接攻击寄主。

    Abstract:

    To provide a theoretical basis for controlling the spread of rust disease, cultivating disease-resistant varieties and reducing yield losses, we investigated the transcriptome differences between Gymnosporangium yamadae and Gymnosporangium asiaticum at the haustorial stage and revealed a specialized selection mechanism for Gymnosporangium species to infect host plants. We sequenced the transcriptomes of the haustoria in rust-infected leaves when basidiospores of G. yamadae and G. asiaticum infected their hosts, and obtained 21 213 and 13 015 unigenes, respectively. Real-time fluorescence quantitative PCR validation of five genes selected from G. yamadae and G. asiaticum, respectively, showed that their expression profiles were generally consistent with the results of transcriptome analysis, demonstrating the reliability of the transcriptome data. We used seven databases such as Nr, GO, KEGG, and KOG to perform gene function annotation and enrichment analysis, and found that the genes from both rusts were mainly enriched in cellular processes, translation, and metabolism-related pathways. Moreover, we used SignalP, TMHMM online website and other software such as dbCAN, BLSAT, HMMER to show that there were 343 (2.51%) and 175 (2.79%) candidate effector proteins containing 14 and 5 proteases and 10 and 3 lipases in the haustoria of G. yamadae and G. asiaticum, respectively. Furthermore, we used OrthoFinder, BLAST and KaKs Calculator software to analyze the evolutionary relationship of the two fungi. Among one-to-one homologous genes, gene pairs with > 82% alignment were considered to be under conservative selection, and 12.37% under positive selection. Five effectors of G. asiaticum were under positive selection, and one of which was a lipase. No significant differences were found in the enrichment of expressed genes between G. yamadae and G. asiaticum, indicating the biological processes involved in haustoria were relatively conserved, despite the typical host selectivity between species. The low protein similarity between the two species suggested that they were under greater host selective pressure and there was significant evolutionary divergence, which might be related to the host-specific selection mechanism. In the haustorial, the main purpose of the effectors might be to regulate physiological processes in the plants rather than attacking the host directly, and G. yamadae and G. asiaticum might use plant lipids as energy sources.

    参考文献
    [1] 韩爱华, 贺雪娇, 张放. 2007-2016年全球苹果、梨与桃生产变动分析. 中国果业信息, 2018, 35(5):21-35. Han AH, He XJ, Zhang F. Analysis of changes in global apple, pear and peach production from 2007 to 2016. China Fruit News, 2018, 35(5):21-35(in Chinese).
    [2] 张放. 2019年我国进出口苹果与梨鲜果统计分析. 中国果业信息, 2020, 37(6):21-31. Zhang F. Statistical analysis of China's import and export of fresh apples and pears in 2019. China Fruit News, 2020, 37(6):21-31(in Chinese).
    [3] Cummins GB, Hiratsuka Y. Illustrated genera of rust fungi//Cummins G B, Hiratsuka Y, eds. Illustrated genera of rust fungi. St. Paul, USA:American Phytopathological Society (APS Press), 2003:240.
    [4] European and Mediterranean Plant Protection Organization. PM 8/2(3) Coniferae. EPPO Bulletin, 2018, 48(3):463-494.
    [5] 刘霞, 陶思齐, 翁涵, 等. 山田胶锈菌和亚洲胶锈菌吸器提取体系建立. 菌物学报, 2019, 38(9):1430-1439. Liu X, Tao SQ, Weng H, et al. Construction of haustorial isolation systems of Gymnosporangium yamadae and G. asiaticum. Mycosystema, 2019, 38(9):1430-1439(in Chinese).
    [6] 曹槟. 中国胶锈菌属的分类及系统发育研究[D]. 北京:北京林业大学, 2018. Cao B. Taxonomy and phylogeny of Gymnosporangium in China[D]. Beijing:Beijing Forestry University, 2018(in Chinese).
    [7] Kern FD. A revised taxonomic account of Gymnosporangium. Pennsylvania, USA:Pennsylvania State University Press, 1991.
    [8] Szabo LJ, Bushnell WR. Hidden robbers:the role of fungal haustoria in parasitism of plants. PNAS, 2001, 98(14):7654-7655.
    [9] Chong J, Harder DE, Rohringer R. Ontogeny of mono-and dikaryotic rust haustoria:cytochemical and ultrastructural studies. Phytopathology, 1981, 71(9):975-983.
    [10] Garnica DP, Nemri A, Upadhyaya NM, et al. The ins and outs of rust haustoria. PLoS Pathog, 2014, 10(9):e1004329.
    [11] Varden FA, De La Concepcion JC, Maidment JH, et al. Taking the stage:effectors in the spotlight. Curr Opin Plant Biol, 2017, 38:25-33.
    [12] Hahn M, Mendgen K. Isolation by ConA binding of haustoria from different rust fungi and comparison of their surface qualities. Protoplasma, 1992, 170(3/4):95-103.
    [13] Hahn M, Mendgen K. Characterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant Microbe Interact, 1997, 10(4):427-437.
    [14] Catanzariti AM, Dodds PN, Lawrence GJ, et al. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell, 2006, 18(1):243-256.
    [15] 汤春蕾. 条锈菌与小麦互作中效应蛋白及诱导寄主细胞坏死基因的鉴定与功能分析[D]. 杨凌:西北农林科技大学, 2013. Tang CL. Characterization and functional analyses of effectors and host cell death inducing genes in wheat and Puccinia striiformis interactions[D]. Yangling:Northwest A & F University, 2013(in Chinese).
    [16] Link TI, Lang P, Scheffler BE, et al. The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol Plant Pathol, 2014, 15(4):379-393.
    [17] Garnica DP, Upadhyaya NM, Dodds PN, et al. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS One, 2013, 8(6):e67150.
    [18] Jones JDG, Dangl JL. The plant immune system. Nature, 2006, 444(7117):323-329.
    [19] Link TI, Voegele RT. Secreted proteins of Uromyces fabae:similarities and stage specificity. Mol Plant Pathol, 2008, 9(1):59-66.
    [20] Jakupović M, Heintz M, Reichmann P, et al. Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol, 2006, 43(1):8-19.
    [21] Voegele RT, Mendgen KW. Nutrient uptake in rust fungi:how sweet is parasitic life? Euphytica, 2011, 179(1):41-55.
    [22] 梁鹏. 白粉菌以糖类代谢途径收缩和效应分子多样化适应专性活体营养生活方式[D]. 海口:海南大学, 2018. Liang P. Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle[D]. Haikou:Hainan University, 2018(in Chinese).
    [23] Hacquard S, Delaruelle C, Legué V, et al. Laser capture microdissection of uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation. Mol Plant Microbe Interact, 2010, 23(10):1275-1286.
    [24] 范学锋, 张河山, 杨文香. 植物专性寄生菌吸器功能研究现状. 微生物学报, 2016, 56(8):1222-1233. Fan XF, Zhang HS, Yang WX. Advances in haustoria function of plants obligate parasite-a review. Acta Microbiol Sin, 2016, 56(8):1222-1233(in Chinese).
    [25] Tao SQ, Cao B, Tian CM, et al. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genomics, 2017, 18(1):651.
    [26] 杨楠, 徐正进, 周永力. 改良TRIZOL法提取真菌RNA的方法. 黑龙江科技信息, 2008(24):20. Yang N, Xu ZJ, Zhou YL. Modified TRIZOL method for the extraction of fungal RNA. Heilongjiang Sci Technol Inf, 2008(24):20. (in Chinese)
    [27] Kim D, Langmead B, Salzberg SL. HISAT:a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12(4):357-360.
    [28] Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29(7):644-652.
    [29] Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12:323.
    [30] Aramaki T, Blanc-Mathieu R, Endo H, et al. KofamKOALA:KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 2020, 36(7):2251-2252.
    [31] Zhang H, Yohe T, Huang L, et al. dbCAN2:a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res, 2018, 46(W1):W95-W101.
    [32] Mistry J, Finn RD, Eddy SR, et al. Challenges in homology search:HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res, 2013, 41(12):e121.
    [33] Lambertucci S, Orman KM, Das Gupta S, et al. Analysis of barley leaf epidermis and extrahaustorial proteomes during powdery mildew infection reveals that the PR5 thaumatin-like protein TLP5 is required for susceptibility towards Blumeria graminis f. sp. hordei. Front Plant Sci, 2019, 10:1138.
    [34] Reid AJ, Jones JT. Bioinformatic analysis of expression data to identify effector candidates. Methods Mol Biol, 2014, 1127:17-27.
    [35] Dyrløv Bendtsen J, Nielsen H, Von Heijne G, et al. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol, 2004, 340(4):783-795.
    [36] Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J Mol Biol, 2001, 305(3):567-580.
    [37] Emms DM, Kelly S. OrthoFinder:phylogenetic orthology inference for comparative genomics. Genome Biol, 2019, 20(1):238.
    [38] Zhang Z, Li J, Zhao XQ, et al. KaKs_Calculator:calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform, 2006, 4(4):259-263.
    [39] Koonin EV, Rogozin IB. Getting positive about selection. Genome Biol, 2003, 4(8):331.
    [40] 庄剑云. 中国真菌志:锈菌目. 北京:科学出版社, 2012:157-195. Zhuang JY. Chinese Fungi:Pucciniales. Beijing:Science Press, 2012:157-195(in Chinese).
    [41] Both M, Eckert SE, Csukai M, et al. Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are potential virulence determinants. Mol Plant Microbe Interact, 2005, 18(2):125-133.
    [42] Gold RE, Mendgen K. Cytology of basidiospore germination, penetration, and early colonization of Phaseolus vulgaris by Uromyces appendiculatus var. appendiculatus. Can J Bot, 1984, 62(10):1989-2002.
    [43] 周世国. 梨胶锈菌性孢子和锈孢子阶段吸器的超微结构研究. 真菌学报, 1992, 11(4):289-293, 337-339. Zhou SG. Ultrastructural studies on the haustorium of Gymnosporangium haraeanum in the pycnio-and aeciostage. Mycosystema, 1992, 11(4):289-293, 337-339(in Chinese).
    [44] Kemen E, Kemen AC, Rafiqi M, et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact, 2005, 18(11):1130-1139.
    [45] 董章勇, 王振中. 植物病原真菌细胞壁降解酶的研究进展. 湖北农业科学, 2012, 51(21):4697-4700. Dong ZY, Wang ZZ. Research progress of fungal cell wall-degrading enzyme. Hubei Agric Sci, 2012, 51(21):4697-4700(in Chinese).
    [46] Dow JM, Clarke BR, Milligan DE, et al. Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Appl Environ Microbiol, 1990, 56(10):2994-2998.
    [47] 李鑫淳. 向日葵锈菌金属蛋白酶基因的生物信息学分析及其原核表达[D]. 呼和浩特:内蒙古农业大学, 2019. Li XC. Bioinformatics analysis and prokaryotic expression of metalloproteinase gene from Puccinia helianthi Schw[D]. Hohhot:Inner Mongolia Agricultural University, 2019(in Chinese).
    [48] Duplessis S, Cuomo CA, Lin YC, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS, 2011, 108(22):9166-9171.
    [49] Spanu PD, Abbott JC, Amselem J, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 2010, 330(6010):1543-1546.
    [50] Luginbuehl LH, Menard GN, Kurup S, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017, 356(6343):1175-1178.
    [51] Cross RL, Müller V. The evolution of A-, F-, and V-type ATP synthases and ATPases:reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett, 2004, 576(1/2):1-4.
    [52] Gemayel R, Yang Y, Dzialo MC, et al. Variable repeats in the eukaryotic polyubiquitin gene ubi4 modulate proteostasis and stress survival. Nat Commun, 2017, 8:397.
    [53] 庄华, 成玉林, 康振生. 小麦条锈菌泛肽-核糖体蛋白S27a基因的鉴定与表达分析. 西北农业学报, 2016, 25(12):1775-1779. Zhuang H, Cheng YL, Kang ZS. Identification and expression analysis of an ubiquitin-ribosomal protein S27a gene from Puccinia striiformis f. sp. tritici. Acta Agric Boreali Occidentalis Sin, 2016, 25(12):1775-1779(in Chinese).
    [54] Depotter JRL, Zuo WL, Hansen MK, et al. Effectors with different gears:divergence of Ustilago maydis effector genes is associated with their temporal expression pattern during plant infection. J Fungi (Basel), 2020, 7(1):16.
    [55] Kristensen DM, Wolf YI, Mushegian AR, et al. Computational methods for gene orthology inference. Brief Bioinform, 2011, 12(5):379-391.
    [56] Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford, UK:Oxford University Press, 2000.
    [57] Hurst LD. The Ka/Ks ratio:diagnosing the form of sequence evolution. Trends Genet, 2002, 18(9):486.
    [58] Xing Y, Lee C. Can RNA selection pressure distort the measurement of Ka/Ks? Gene, 2006, 370:1-5.
    [59] Pagani F, Baralle FE. Genomic variants in exons and introns:identifying the splicing spoilers. Nat Rev Genet, 2004, 5:389-396.
    [60] Looi HK, Toh YF, Yew SM, et al. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ, 2017, 5:e2841.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翁涵,刘霞,陶思齐,梁英梅. 山田胶锈菌和亚洲胶锈菌吸器的比较转录组分析[J]. 生物工程学报, 2022, 38(10): 3825-3843

复制
分享
文章指标
  • 点击次数:221
  • 下载次数: 1300
  • HTML阅读次数: 1049
  • 引用次数: 0
历史
  • 收稿日期:2022-05-10
  • 在线发布日期: 2022-10-18
  • 出版日期: 2022-10-25
文章二维码
您是第6055605位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司