赖氨酸脱羧酶分子改造及固定化合成1,5-戊二胺研究进展
作者:
基金项目:

国家重点研发计划(2018YFA0902200)


Molecular engineering and immobilization of lysine decarboxylase for synthesis of 1,5-diaminopentane: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    1,5-戊二胺又名尸胺,是一种重要的生物基聚酰胺生产原料,可以与二元羧酸缩合生成生物基聚酰胺PA5X,其性能可以与石油基聚酰胺材料媲美。生物基聚酰胺以可再生能源为底物,如淀粉、纤维素、植物油等,符合绿色可持续发展战略。1,5-戊二胺的生物合成主要包括微生物从头合成及全细胞催化两种方法,而赖氨酸脱羧酶是其生物合成中的关键酶,该酶主要包括诱导型赖氨酸脱羧酶CadA和组成型赖氨酸脱羧酶LdcC两种。赖氨酸脱羧酶是一种折叠型Ⅰ型磷酸吡哆醛(pyridoxal-5' phosphate,PLP)依赖酶,但该酶在实际反应过程中易受环境因素影响,存在活性不高、结构不稳定等问题。因此,提高赖氨酸脱羧酶催化活性及稳定性成为该领域的研究热点,主要包括分子改造以及固定化研究。文中综述了赖氨酸脱羧酶的作用机理、分子改造技术及固定化策略的研究进展,并对未来进一步提升赖氨酸脱羧酶活性及稳定性策略进行了展望,旨在实现1,5-戊二胺的高效生物制备。

    Abstract:

    1,5-diaminopentane, also known as cadaverine, is an important raw material for the production of biopolyamide. It can be polymerized with dicarboxylic acid to produce biopolyamide PA5X whose performances are comparable to that of the petroleum-based polyamide materials. Notably, biopolyamide uses renewable resources such as starch, cellulose and vegetable oil as substrate. The production process does not cause pollution to the environment, which is in line with the green and sustainable development strategy. The biosynthesis of 1,5-diaminopentane mainly includes two methods:the de novo microbial synthesis and the whole cell catalysis. Lysine decarboxylase as the key enzyme for 1,5-diaminopentane production, mainly includes an inducible lysine decarboxylase CadA and a constituent lysine decarboxylase LdcC. Lysine decarboxylase is a folded type Ⅰ pyridoxal-5' phosphate (PLP) dependent enzyme, which displays low activity and unstable structure, and is susceptible to deactivation by environmental factors in practical applications. Therefore, improving the catalytic activity and stability of lysine decarboxylase has become a research focus in this field, and molecular engineering and immobilization are the mainly approaches. Here, the mechanism, molecular engineering and immobilization strategies of lysine decarboxylase were reviewed, and the further strategies for improving its activity and stability were also prospected, with the aim to achieve efficient production of 1,5-diaminopentane.

    参考文献
    [1] Gibbs NM, Su SH, Lopez-Nieves S, et al. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. Plant J, 2021, 107(5):1283-1298.
    [2] Costa CAB, Grazhdan D, Fiutowski J, et al. Meat and fish freshness evaluation by functionalized cantilever-based biosensors. Microsyst Technol, 2020, 26(3):867-871.
    [3] Jancewicz AL, Gibbs NM, Masson PH. Cadaverine's functional role in plant development and environmental response. Front Plant Sci, 2016, 7:870.
    [4] Lee PC, Lee SY, Hong SH, et al. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens from bovine rumen. Appl Microbiol Biotechnol, 2002, 58(5):663-668.
    [5] Draths KM, Frost JW. Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc, 1994, 116(1):399-400.
    [6] Ogunniyi DS. Castor oil:a vital industrial raw material. Bioresour Technol, 2006, 97(9):1086-1091.
    [7] Kim HT, Baritugo KA, Oh YH, et al. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chem Eng, 2018, 6(4):5296-5305.
    [8] Yang PP, Li XJ, Liu HD, Li ZH, Liu J, Zhuang W, Wu JL, Ying HJ. Thermodynamics, crystal structure, and characterization of bio-based nylon 54 monomer. CrystEngComm, 2019, 21(46):7069-7077.
    [9] 邓洁, 高震, 高华, 等. 生物酶法合成1, 5-戊二胺的研究进展. 广西科学, 2017, 24(1):40-47, 53. Deng J, Gao Z, Gao H, et al. Research progress of the biosynthesis of 1,5-diaminopentane. Guangxi Sci, 2017, 24(1):40-47, 53(in Chinese).
    [10] Weiss M, Haufe J, Carus M, et al. A review of the environmental impacts of biobased materials. J Ind Ecol, 2012, 16:S169-S181.
    [11] Shin J, Joo JC, Lee E, et al. Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial grade L-lysine. Appl Biochem Biotechnol, 2018, 185(4):909-924.
    [12] Mi JL, Liu SM, Qi HS, et al. Cellular engineering and biocatalysis strategies toward sustainable cadaverine production:state of the art and perspectives. ACS Sustainable Chem Eng, 2021, 9(3):1061-1072.
    [13] Kim HT, Baritugo KA, Hyun S, et al. Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510. ACS Sustainable Chemistry & Engineering, 2020, 8(1):129-138.
    [14] Kwak DH, Lim HG, Yang JN, et al. Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnol Biofuels, 2017, 10:20.
    [15] Qian ZG, Xia XX, Lee SY. Metabolic engineering of Escherichia coli for the production of putrescine:a four carbon diamine. Biotechnol Bioeng, 2009, 104(4):651-662.
    [16] Rui JQ, You SP, Zheng YX, et al. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresour Technol, 2020, 302:122844.
    [17] Ma WC, Cao WJ, Zhang H, et al. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett, 2015, 37(4):799-806.
    [18] Rajewsky B, Bücker H, Pauly H. The UV-action spectrum of the lysine decarboxylase induction in Bacterium cadaveris. Arch Biochem Biophys, 1959, 82(1):229-232.
    [19] Chen W, Kai Z, Chen ZJ, et al. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production. Biotechnol Bioprocess Eng, 2015, 20(3):439-446.
    [20] Li NQ, Chou H, Yu LJ, et al. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnol Bioprocess Eng, 2014, 19(6):965-972.
    [21] Yamamoto Y, Miwa Y, Miyoshi K, et al. The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst, 1997, 72(3):167-172.
    [22] 陈炫, 范昕建, 吕晓菊, 雷秉钧, 张再伟. 大肠埃希氏菌及肺炎克雷伯氏菌超广谱β-内酰胺酶基因的核苷酸序列测定及分子进化树的构建. 中国抗生素杂志, 2003, 28(2):87-90. Chen X, Fan XJ, LÜ XJ, et al. Nucleotide sequence and molecular evolutionary tree establishing of extended spectrum β-lactamuses gene in E.coli and K. pneumoniae. Chin J Antibiot, 2003, 28(2):87-90(in Chinese).
    [23] Lemonnier M, Lane D. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology (Reading), 1998, 144(Pt 3):751-760.
    [24] Kanjee U, Gutsche I, Alexopoulos E, et al. Linkage between the bacterial acid stress and stringent responses:the structure of the inducible lysine decarboxylase. EMBO J, 2011, 30(5):931-944.
    [25] Moreau PL. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol, 2007, 189(6):2249-2261.
    [26] Rocha JF, Pina AF, Sousa SF, et al. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries:a structural and mechanistic perspective. Catal Sci Technol, 2019, 9(18):4864-4876.
    [27] Kim JH, Kim HJ, Kim YH, et al. Functional study of lysine decarboxylases from Klebsiella pneumoniae in Escherichia coli and application of whole cell bioconversion for cadaverine production. J Microbiol Biotechnol, 2016, 26(9):1586-1592.
    [28] Takatsuka Y, Onoda M, Sugiyama T, et al. Novel characteristics of Selenomonas ruminantium lysine decarboxylase capable of decarboxylating both L-lysine and L-ornithine. Biosci Biotechnol Biochem, 1999, 63(6):1063-1069.
    [29] Takatsuka Y, Yamaguchi Y, Ono M, et al. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J Bacteriol, 2000, 182(23):6732-6741.
    [30] 李乃强, 于丽珺, 徐岩. 产酸克雷伯氏菌赖氨酸脱羧酶的异源表达及粗酶性质. 生物工程学报, 2016, 32(4):527-532. Li NQ, Yu LJ, Xu Y. Heterologous expression and characterization of Klebsiella oxytoca lysine decarboxylase. Chin J Biotech, 2016, 32(4):527-532(in Chinese).
    [31] 寇凤雨. L-赖氨酸脱羧酶的酶学性质及其应用研究[D]. 上海:华东理工大学, 2016. Kou FY. Enzymatic properties of L-lysine decarboxylase and its application in cadaverine production[D]. Shanghai:East China University of Science and Technology, 2016(in Chinese).
    [32] OSIRE Tolbert, 杨套伟, 乔郅钠, 等. 赖氨酸脱羧酶分子改造及其催化合成戊二胺. 食品与发酵工业, 2022, 48(1):8-14. Tolbert O, Yang TW, Qiao ZN, et al. Molecular modification of lysine decarboxylase for catalytic synthesis of pentanediamine. Food Ferment Ind, 2022, 48(1):8-14(in Chinese).
    [33] Han LF, Yuan JJ, Ao XL, et al. Biochemical characterization and phylogenetic analysis of the virulence factor lysine decarboxylase from Vibrio vulnificus. Front Microbiol, 2018, 9:3082.
    [34] Yamamoto S, Imamura T, Kusaba K, et al. Purification and some properties of inducible lysine decarboxylase from Vibrio parahaemolyticus. Chem Pharm Bull (Tokyo), 1991, 39(11):3067-3070.
    [35] Osire T, Qiao ZN, Yang TW, et al. Biochemical characterization and structural insight into interaction and conformation mechanisms of Serratia marcescens lysine decarboxylase (SmcadA). Molecules, 2021, 26(3):697.
    [36] Jeong S, Yeon YJ, Choi EG, et al. Alkaliphilic lysine decarboxylases for effective synthesis of cadaverine from L-lysine. Korean J Chem Eng, 2016, 33(5):1530-1533.
    [37] Kim HS, Kim BH, Cho YD. Purification and characterization of monomeric lysine decarboxylase from soybean (Glycine max) axes. Arch Biochem Biophys, 1998, 354(1):40-46.
    [38] Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol, 2013, 67:65-81.
    [39] Eichinger A, Haneburger I, Koller C, et al. Crystal structure of the sensory domain of Escherichia coli CadC, a member of the ToxR-like protein family. Protein Sci, 2011, 20(4):656-669.
    [40] Rauschmeier M, Schüppel V, Tetsch L, et al. New insights ):578-584.
    [64] Liu EJ, Sinclair A, Keefe AJ, et al. EKylation:addition of an alternating-charge peptide stabilizes proteins. Biomacromolecules, 2015, 16(10):3357-3361.
    [65] Chen K, Hu Y, Dong XY, et al. Molecular insights into the enhanced performance of EKylated PETase toward PET degradation. ACS Catal, 2021, 11(12):7358-7370.
    [66] Cavalcante FTT, Cavalcante ALG, De Sousa IG, et al. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts, 2021, 11(10):1222.
    [67] CAO LQ. Immobilised enzymes:science or art? Current Opinion in Chemical Biology, 2005, 9(2):217-226.
    [68] Liu DM, Chen J, Shi YP. Advances on methods and easy separated support materials for enzymes immobilization. Trac Trends Anal Chem, 2018, 102:332-342.
    [69] Guisan JM, Fernandez-Lorente G, Rocha-Martin J, et al. Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Curr Opin Green Sustain Chem, 2022, 35:100593.
    [70] Bilal M, Iqbal HMN. Naturally-derived biopolymers:potential platforms for enzyme immobilization. Int J Biol Macromol, 2019, 130:462-482.
    [71] Xia H, Li N, Zhong X, et al. Metal-organic frameworks:a potential platform for enzyme immobilization and related applications. Front Bioeng Biotechnol, 2020, 8:695.
    [72] Seo HM, Kim JH, Jeon JM, et al. In situ immobilization of lysine decarboxylase on a biopolymer by fusion with phasin:immobilization of CadA on intracellular PHA. Process Biochem, 2016, 51(10):1413-1419.
    [73] Yao JH, Li Z, Ji XL, et al. Novel enzyme-metal-organic framework composite for efficient cadaverine production. Biochem Eng J, 2021, 176:108222.
    [74] Zhou N, Zhang AL, Wei GG, et al. Cadaverine production from L-lysine with chitin-binding protein-mediated lysine decarboxylase immobilization. Front Bioeng Biotechnol, 2020, 8:103.
    [75] Kim JH, Kim J, Kim HJ, et al. Biotransformation of pyridoxal 5'-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme Microb Technol,猠昲猰17猬瘠丱04猺昹攭15笮Escherichia coli lysine decarboxylase. J Microbiol Biotechnol, 2017, 27(2):289-296.
    [77] Wei GG, Chen Y, Zhou N, et al. Chitin biopolymer mediates self-sufficient biocatalyst of pyridoxal 5'-phosphate and L-lysine decarboxylase. Chem Eng J, 2022, 427:132030.
    [78] Mi JL, Liu SM, Du Y, et al. Cofactor self-sufficient by co-immobilization of pyridoxal 5'-phosphate and lysine decarboxylase for cadaverine production. Bioresour Technol Rep, 2022, 17:100939.
    [79] Xue YJ, Zhao YL, Ji XL, et al. Advances in bio-nylon 5X:discovery of new lysine decarboxylases for the high-level production of cadaverine. Green Chem, 2020, 22(24):8656-8668.ering. Molecules, 2021, 26(18):5599.
    [57] An YF, Ji JF, Wu WF, et al. Random mutagenesis and recombination of Sam1 gene by integrating error-prone PCR with staggered extension process. Biotechnol Lett, 2008, 30(7):1227-1232.
    [58] Wu W, Jia ZC, Liu P, et al. A novel PCR strategy for high-efficiency, automated site-directed mutagenesis. Nucleic Acids Res, 2005, 33(13):e110.
    [59] Lyozin GT, Brunelli L. DNA gap repair in Escherichia coli for multiplex site-directed mutagenesis. FASEB J, 2020, 34(5):6351-6368.
    [60] Hong EY, Lee SG, Park BJ, et al. Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine. Biotechnol J, 2017, 12(11):2017Nov;12(11).
    [61] Boutureira O, Bernardes GJL. Advances in chemical protein modification. Chem Rev, 2015, 115(5):2174-2195.
    [62] Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications:the chemistry of proteome diversifications. Angew Chem Int Ed Engl, 2005, 44(45):7342-7372.
    [63] Szkolar L, Guilbaud JB, Miller AF, et al. Enzymatically triggered peptide hydrogels for 3D cell encapsulation and culture. J Pept Sci, 2014, 20(7
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘思敏,齐海山. 赖氨酸脱羧酶分子改造及固定化合成1,5-戊二胺研究进展[J]. 生物工程学报, 2022, 38(12): 4403-4419

复制
分享
文章指标
  • 点击次数:677
  • 下载次数: 1308
  • HTML阅读次数: 1399
  • 引用次数: 0
历史
  • 收稿日期:2022-05-19
  • 最后修改日期:2022-07-14
  • 在线发布日期: 2022-12-27
  • 出版日期: 2022-12-25
文章二维码
您是第6155726位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司