Abstract:Long-chain dicarboxylic acid (DCA), a building block for synthesizing a variety of high value-added chemicals, has been widely used in agriculture, chemical, and pharmaceutical industries. The global demand for DCA is increasing in recent years. Compared with chemical synthesis which requires harsh conditions and complicated processes, fermentative production of DCA has many unparalleled advantages, such as low cost and mild reaction conditions. In this review, we summarized the chemical and microbial synthesis methods for DCA and the commercialization status of the fermentation process. Moreover, the advances of using molecular and metabolic engineering to create high-yielding strains for efficient production of DCA were highlighted. Furthermore, the challenges remaining in the microbial fermentation process were also discussed. Finally, the perspectives for developing high titer DCA producing strains by synthetic biology were proposed.