可降解新烟碱类杀虫剂微生物及其代谢途径的研究进展
作者:
基金项目:

国家自然科学基金(31800118,32260032);江西双千计划(jxsq2019101054)


Microorganisms capable of degrading neonicotinoids and their metabolic pathways: a review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [122]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    新烟碱类化合物基于烟碱结构改造修饰制备,相较菊酯、含磷类等杀虫剂,因其选择性毒力被认为是一类对人类和生态无害的农药。然而,近年来由于新烟碱类杀虫剂(neonicotinoid insecticides)过度施用,其残余或转化的物质通过在土壤与水体中累积,影响昆虫甚至哺乳动物及其生理与行为,导致了一系列生态环境问题和继发危害。本文聚焦新烟碱类杀虫剂的产业现状,面向生物降解新烟碱类杀虫剂这一迫切需求,围绕新烟碱类杀虫剂的微生物菌株资源,重点阐述微生物降解新烟碱类杀虫剂的代谢机制及其多样性。通过梳理新烟碱类杀虫剂生物降解及其应用转化的关键问题和前沿进展,旨在为借助合成生物学和宏基因组学手段建立或筛选安全可控的新烟碱类杀虫剂的高效转化体系提供参考。

    Abstract:

    Neonicotinoid compounds are usually considered harmless and eco-friendly in terms of their targeted toxicity compared to that of pyrethroids and phosphorus-containing pesticides. However, overuse of neonicotinoid insecticides resulted in the accumulation of its residuals or intermediates in soil and water, which consequently affected beneficial insects as well as mammals, yielding pollution and secondary risks. This review summarized the recent advances in neonicotinoid degrading microorganisms and their metabolic diversity, with the aim to address the urgent need for degrading these insecticides. These advances may facilitate the development of controllable and reliable technologies for efficiently transforming neonicotinoid insecticides into value-added products by synthetic biology and metagenomics.

    参考文献
    [1] 张超, 孙艺夺, 孙生阳, 等. 城乡收入差距是否提高了农业化学品投入?——以农药施用为例. 中国农村经济, 2019(1):96-111. Zhang C, Sun YD, Sun SY, et al. Does the urban-rural income gap increase agricultural chemical input? A case study of pesticide use. Chin Rural Econ, 2019(1):96-111(in Chinese).
    [2] 秦萌, 任宗杰, 张帅, 等. 从"农药零增长行动"看"农药减量化"发展. 中国植保导刊, 2021, 41(11):89-94. Qin M, Ren ZJ, Zhang S, et al. The development of "pesticide reduction":from the perspective of "action to achieve zero growth of pesticide use". China Plant Prot, 2021, 41(11):89-94(in Chinese).
    [3] 杨吉春, 李淼, 柴宝山, 等. 新烟碱类杀虫剂最新研究进展. 农药, 2007, 46(7):433-438. Yang JC, Li M, Chai BS, et al. Recent research advances in new neonicotinoids insecticides. Agrochemicals, 2007, 46(7):433-438(in Chinese).
    [4] Sparks TC, Nauen R. IRAC:mode of action classification and insecticide resistance management. Pestic Biochem Physiol, 2015, 121:122-128.
    [5] Li J, Li SS, Xie LL, et al. Additional role of nicotinic acid hydroxylase for the transformation of 3-succinoyl-pyridine by Pseudomonas sp. strain JY-Q. Appl Environ Microbiol, 2021, 87(6):e02740-20.
    [6] Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology:mechanisms of selective action. Annu Rev Pharmacol Toxicol, 2005, 45:247-268.
    [7] Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides:a review of the evidence post 2013. Environ Sci Pollut Res Int, 2017, 24(21):17285-17325.
    [8] Pisa LW, Amaral-Rogers V, Belzunces LP, et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int, 2015, 22(1):68-102.
    [9] Cimino AM, Boyles AL, Thayer KA, et al. Effects of neonicotinoid pesticide exposure on human health:a systematic review. Environ Health Perspect, 2017, 125(2):155-162.
    [10] Hussain S, Hartley CJ, Shettigar M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems. FEMS Microbiol Lett, 2016, 363(23):fnw252.
    [11] Ahmad S, Cui DM, Zhong GH, et al. Microbial technologies employed for biodegradation of neonicotinoids in the agroecosystem. Front Microbiol, 2021, 12:759439.
    [12] Anjos CS, Lima RN, Porto ALM. An overview of neonicotinoids:biotransformation and biodegradation by microbiological processes. Environ Sci Pollut Res Int, 2021, 28(28):37082-37109.
    [13] Peña A, Rodríguez-Liébana JA, Mingorance MD. Persistence of two neonicotinoid insecticides in wastewater, and in aqueous solutions of surfactants and dissolved organic matter. Chemosphere, 2011, 84(4):464-470.
    [14] 席培宇, 李景壮, 段亚玲, 等. 噻虫嗪在土壤表面及水中的光解特性. 农药, 2014, 53(10):726-728, 750. Xi PY, Li JZ, Duan YL, et al. The photolysis characteristics of thiamethoxam in the water and soil surface. Agrochemicals, 2014, 53(10):726-728, 750(in Chinese).
    [15] De Urzedo APFM, Diniz MER, Nascentes CC, et al. Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom, 2007, 42(10):1319-1325.
    [16] 李敏, 赵会君, 屈欢, 等. 新烟碱类杀虫剂潜在环境风险及光降解行为研究进展. 农药, 2019, 58(3):170-173. Li M, Zhao HJ, Qu H, et al. Research progress on potential environmental risks and photodegradation of neonicotinoids insecticides. Agrochemicals, 2019, 58(3):170-173(in Chinese).
    [17] Colombo V, Mohr S, Berghahn R, et al. Structural changes in a macrozoobenthos assemblage after imidacloprid pulses in aquatic field-based microcosms. Arch Environ Contam Toxicol, 2013, 65(4):683-692.
    [18] Šojić D, Despotović V, Orčić D, et al. Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes:kinetics, degradation intermediates and toxicity. J Hydrol, 2012, 472/473:314-327.
    [19] 程浩淼, 成凌, 朱腾义, 等. 新烟碱类农药在土壤中环境行为的研究进展. 中国环境科学, 2020, 40(2):736-747. Cheng HM, Cheng L, Zhu TY, et al. Research progress on environmental behaviors of neonicotinoids in the soil. China Environ Sci, 2020, 40(2):736-747(in Chinese).
    [20] 谢国红, 刘国光, 孙德智, 等. 啶虫脒水解动力学研究. 安徽农业科学, 2007, 35(30):9629-9630. Xie GH, Liu GG, Sun DZ, et al. Study on hydrolysis kinetics of acetamiprid. J Anhui Agric Sci, 2007, 35(30):9629-9630(in Chinese).
    [21] 庾琴, 周华, 王静, 等. 啶虫脒在环境中的降解代谢及其安全性的研究进展. 农药, 2007, 46(4):223-226. Yu Q, Zhou H, Wang J, et al. Research progress on degradation of acetamiprid and safety to environment. Agrochemicals, 2007, 46(4):223-226(in Chinese).
    [22] 管欢, 黄慧俐, 行艳景, 等. 噻虫胺在甘蔗和土壤中的残留分析及消解动态. 现代农药, 2015, 14(2):42-45. Guan H, Huang HL, Xing YJ, et al. Residue and degradation dynamics of clothianidin in sugarcane and soil. Mod Agrochem, 2015, 14(2):42-45(in Chinese).
    [23] 张鹏, 金芬, 杨莉莉, 等. 噻虫胺在番茄和土壤中的残留及消解动态. 农药学学报, 2016, 18(4):490-496. Zhang P, Jin F, Yang LL, et al. Residue and dissipation of clothianidin in tomatoes and soil. Chin J Pestic Sci, 2016, 18(4):490-496(in Chinese).
    [24] European Food Safety Authority (EFSA). Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J, 2012, 10(5):2668.
    [25] 苍涛, 王彦华, 吴长兴, 等. 新烟碱类杀虫剂对蜜蜂的急性毒性及风险评价. 生态毒理学报, 2017, 12(4):285-292. Cang T, Wang YH, Wu CX, et al. Acute toxicity and risk assessment of neonicotinoid insecticides to honeybees (Apis mellifera L.). Asian J Ecotoxicol, 2017, 12(4):285-292(in Chinese).
    [26] Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol, 2007, 52:81-106.
    [27] Krischik VA, Landmark AL, Heimpel GE. Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera:Encyrtidae). Environ Entomol, 2007, 36(5):1238-1245.
    [28] Forister ML, Cousens B, Harrison JG, et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol Lett, 2016, 12(8):20160475.
    [29] Hallmann CA, Foppen RPB, Van Turnhout CAM, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 2014, 511(7509):341-343.
    [30] Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, et al. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res, 2015, 136:97-107.
    [31] Finnegan MC, Baxter LR, Maul JD, et al. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish. Environ Toxicol Chem, 2017, 36(10):2838-2848.
    [32] 张琪, 赵成, 卢晓霞, 等. 新烟碱类杀虫剂对非靶标生物毒性效应的研究进展. 生态毒理学报, 2020, 15(1):56-71. Zhang Q, Zhao C, Lu XX, et al. Advances in research on toxic effects of neonicotinoid insecticides on non-target organisms. Asian J Ecotoxicol, 2020, 15(1):56-71(in Chinese).
    [33] Sumon KA, Ritika AK, Peeters ETHM, et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ Pollut, 2018, 236:432-441.
    [34] Liu T, Wang XG, Xu JL, et al. Biochemical and genetic toxicity of dinotefuran on earthworms (Eisenia fetida). Chemosphere, 2017, 176:156-164.
    [35] Qi SZ, Wang DH, Zhu LZ, et al. Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida. Environ Sci Pollut Res Int, 2018, 25(14):14138-14147.
    [36] Kapoor U, Srivastava MK, Srivastava LP. Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food Chem Toxicol, 2011, 49(12):3086-3089.
    [37] Babeľová J, Šefčíková Z, Čikoš Š, et al. Exposure to neonicotinoid insecticides induces embryotoxicity in mice and rabbits. Toxicology, 2017, 392:71-80.
    [38] Lonare M, Kumar M, Raut S, et al. Evaluation of imidacloprid-induced neurotoxicity in male rats:a protective effect of curcumin. Neurochem Int, 2014, 78:122-129.
    [39] Şekeroğlu V, Şekeroğlu ZA, Kefelioğlu H. Cytogenetic effects of commercial formulations of deltamethrin and/or thiacloprid on wistar rat bone marrow cells. Environ Toxicol, 2013, 28(9):524-531.
    [40] Vohra P, Khera KS, Sangha GK. Physiological, biochemical and histological alterations induced by administration of imidacloprid in female albino rats. Pestic Biochem Physiol, 2014, 110:50-56.
    [41] Caron-Beaudoin É, Viau R, Sanderson JT. Effects of neonicotinoid pesticides on promoter-specific aromatase (CYP19) expression in Hs578t breast cancer cells and the role of the VEGF pathway. Environ Health Perspect, 2018, 126(4):047014.
    [42] Koureas M, Tsezou A, Tsakalof A, et al. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. Sci Total Environ, 2014, 496:358-364.
    [43] Hernández AF, Casado I, Pena G, et al. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects. Inhal Toxicol, 2008, 20(9):839-849.
    [44] Carmichael SL, Yang W, Roberts E, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California. Environ Res, 2014, 135:133-138.
    [45] Keil AP, Daniels JL, Hertz-Picciotto I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification:the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Environ Health, 2014, 13(1):3.
    [46] Acero JL, Real FJ, Benitez FJ, et al. Degradation of neonicotinoids by UV irradiation:kinetics and effect of real water constituents. Sep Purif Technol, 2019, 211:218-226.
    [47] Lin ZQ, Zhang WP, Pang SM, et al. Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. Molecules, 2020, 25(3):738.
    [48] Ye SJ, Yan M, Tan XF, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl Catal B Environ, 2019, 250:78-88.
    [49] Li HY, Qiu YZ, Yao T, et al. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1):degradation ability, microbial community, and Medicago sativa phytotoxicity. J Hazard Mater, 2020, 389:121834.
    [50] Pang SM, Lin ZQ, Zhang WP, et al. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol, 2020, 11:868.
    [51] Wang GL, Chen X, Yue WL, et al. Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil. PLoS One, 2013, 8(12):e82603.
    [52] Dai YJ, Yuan S, Ge F, et al. Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid. Appl Microbiol Biotechnol, 2006, 71(6):927-934.
    [53] Hussain S, Siddique T, Arshad M, et al. Bioremediation and phytoremediation of pesticides:recent advances. Crit Rev Environ Sci Technol, 2009, 39(10):843-907.
    [54] 张国生, 侯广新. 烟碱类杀虫剂的应用、开发现状及展望. 农药科学与管理, 2004, 25(3):22-26. Zhang GS, Hou GX. Present status of development and prospect of nicotinoid insecticides. Pestic Sci Adm, 2004, 25(3):22-26(in Chinese).
    [55] Ferreira L, Rosales E, Danko AS, et al. Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot, 2016, 101:19-26.
    [56] Phugare SS, Kalyani DC, Gaikwad YB, et al. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J, 2013, 230:27-35.
    [57] Gupta M, Mathur S, Sharma TK, et al. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater, 2016, 301:250-258.
    [58] Ma Y, Zhai S, Mao SY, et al. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648. J Environ Sci Health B, 2014, 49(9):661-670.
    [59] Guo LL, Dai ZL, Guo JJ, et al. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. AMB Express, 2020, 10(1):7.
    [60] Akoijam R, Singh B. Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Int J Environ Anal Chem, 2015, 95(8):730-743.
    [61] Chen T, Dai YJ, Ding JF, et al. N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation, 2008, 19(5):651-658.
    [62] Pandey G, Dorrian SJ, Russell RJ, et al. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun, 2009, 380(3):710-714.
    [63] Shettigar M, Pearce S, Pandey R, et al. Cloning of a novel 6-chloronicotinic acid chlorohydrolase from the newly isolated 6-chloronicotinic acid mineralizing Bradyrhizobiaceae strain SG-6C. PLoS One, 2012, 7(11):e51162.
    [64] Sabourmoghaddadegradation by Pseudomonas and Bacillus strains isolated from agricultural soils. Environ Monit Assess, 2015, 187(5):300.
    [123] Lu TQ, Mao SY, Sun SL, et al. Regulation of hydroxylation and nitroreduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by Pseudomonas putida. J Agric Food Chem, 2016, 64(24):4866-4875.
    [124] Akoijam R, Singh B. Metabolic degradation of imidacloprid in paddy field soil. Environ Monit Assess, 2014, 186(10):5977-5984.
    [125] Xu B, Xue R, Zhou J, et al. Characterization of acetamiprid biodegradation by the microbial consortium ACE-3 enriched from contaminated soil. Front Microbiol, 2020, 11:1429.
    [126] Zhang ZL, Mei XT, He ZL, et al. Nicotine metabolism pathway in bacteria:mechanism, modification, and application. Appl Microbiol Biotechnol, 2022, 106(3):889-904.
    [127] Li J, Qian SL, Xiong L, et al. Comparative genomics reveals specific genetic architectures in nicotine metabolism of Pseudomonas sp. JY-Q. Front Microbiol, 2017, 8:2085.
    [128] Tang HZ, Zhang KZ, Hu HY, et al. Molecular deceleration regulates toxicant release to prevent cell damage in Pseudomonas putida S16(DSM 28022). mBio, 2020, 11(5):e02012-20.
    [129] Li J, Shen MJ, Chen ZY, et al. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expr Purif, 2021, 178:105767.
    [130] Dulchavsky M, Clark CT, Bardwell JCA, et al. A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nat Chem Biol, 2021, 17(3):344-350.
    [131] Zhang H, Zhao R, Huang CC, et al. Selective and faster nicotine biodegradation by genetically modified Pseudomonas sp. JY-Q in the presence of glucose. Appl Microbiol Biotechnol, 2019, 103(1):339-348.
    [132] Rodríguez-Castillo G, Molina-Rodríguez M, Cambronero-Heinrichs JC, et al. Simultaneous removal of neonicotinoid insecticides by a microbial degrading consortium:detoxification at reactor scale. Chemosphere, 2019, 235:1097-1106.
    [133] Li J, Yi FM, Chen GQ, et al. Function enhancement of a metabolic module via endogenous promoter replacement for Pseudomonas sp. JY-Q to degrade nicotine in tobacco waste treatment. Appl Biochem Biotechnol, 2021, 193(9):2793-2805.
    [134] Huang CC, Shan LH, Chen ZY, et al. Differential effects of homologous transcriptional regulators NicR2A, NicR2B1, and NicR2B2 and endogenous ectopic strong promoters on nicotine metabolism in Pseudomonas sp. strain JY-Q. Appl Environ Microbiol, 2021, 87(3):e02457-20.
    [135] Li J, Wang J, Li SS, et al. Co-occurrence of functional modules derived from nicotine-degrading gene c奬彵彳te陲婳 c桯瑮fe筲s 荡酤靤革荴ive effects in Pseudomonas
    [136] Liu TF, Li J, Qiu LQ, et al. Combined genomic and transcriptomic analysis of the dibutyl phthalate metabolic pathway in Arthrobacter sp. ZJUTW. Biotechnol Bioeng, 2020, 117(12):3712-3726.
    [137] Tal O, Bartuv R, Vetcos M, et al. NetCom:a network-based tool for predicting metabolic activities of microbial communities based on interpretation of metagenomics data. Microorganisms, 2021, 9(9):1838.ytochrome P450 involved in the degradation of neonicotinoid insecticide acetamiprid in Phanerochaete chrysosporium. J Hazard Mater, 2019, 371:494-498.
    [80] Dai YJ, Ji WW, Chen T, et al. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. J Agric Food Chem, 2010, 58(4):2419-2425.
    [81] Gupta S, Gajbhiye VT. Persistence of acetamiprid in soil. Bull Environ Contam Toxicol, 2007, 78(5):349-352.
    [82] Dai YJ, Zhao YJ, Zhang WJ, et al. Biotransformation of thianicotinyl neonicotinoid insecticides:diverse molecular substituents response to metabolism by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Bioresour Technol, 2010, 101(11):3838-3843.
    [83] Liu ZH, Dai YJ, Huang GD, et al. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag Sci, 2011, 67(10):1245-1252.
    [84] Parte SG, Kharat AS. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by Pseudomonas stutzeri smk. J Environ Public Health, 2019, 2019:4807913.
    [85] Wang X, Xue LG, Chang SJ, et al. Bioremediation and metabolism of clothianidin by mixed bacterial consortia enriched from contaminated soils in Chinese greenhouse. Process Biochem, 2019, 78:114-122.
    [86] Mori T, Wang JQ, Tanaka Y, et al. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater, 2017, 321:586-590.
    [87] Mulligan RA, Tomco PL, Howard MW, et al. Aerobic versus anaerobic microbial degradation of clothianidin under simulated California rice field conditions. J Agric Food Chem, 2016, 64(38):7059-7067.
    [88] 谭海军. 新烟碱类杀虫剂环氧虫啶及其开发. 世界农药, 2019, 41(4):59-64. Tan HJ. New neonicotinoid insecticide cycloxapyrid and its development. World Pestic, 2019, 41(4):59-64(in Chinese).
    [89] Zhang HJ, Zhou QW, Zhou GC, et al. Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J Agric Food Chem, 2012, 60(1):153-159.
    [90] Ge F, Zhou LY, Wang Y, et al. Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacterium Ensifer meliloti CGMCC 7333. Int Biodeterior Biodegrad, 2014, 93:10-17.
    [91] Zhao YX, Jiang HY, Cheng X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite. Int Biodeterior Biodegrad, 2019, 145:104806.
    [92] Zhao YJ, Dai YJ, Yu CG, et al. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1.1788. Biodegradation, 2009, 20(6):761-768.
    [93] Mori T, Ohno H, Ichinose H, et al. White-rot fungus Phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an N-dealkylation reaction catalyzed by two cytochrome P450s. J Hazard Mater, 2021, 402:123831.
    [94] Chen KY, Liu XG, Wu XH, et al. The degradation dynamics and rapid detection of thiacloprid and its degradation products in water and soil by UHPLC-QTOF-MS. Chemosphere, 2021, 263:127960.
    [95] Maienfisch P, Huerlimann H, Rindlisbacher A, et al. The discovery of thiamethoxam:a second-generation neonicotinoid. Pest Manag Sci, 2001, 57(2):165-176.
    [96] Zhou GC, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol, 2013, 97(9):4065-4074.
    [97] Rana S, Gupta V. Microbial degradation of second generation neonicotinoid:thiamethoxam in clay loam soils. J Pharmacogn Phytochem, 2019, 8(1S):294-298.
    [98] Hegde D, Manoharan T, Sridar R. Identification and characterization of bacterial isolates and their role in the degradation of neonicotinoid insecticide thiamethoxam. J Pure Appl Microbiol, 2017, 11(1):393-400.
    [99] Wang WF, Wan Q, Li YX, et al. Application of an endophyte Enterobacter sp. TMX13 to reduce thiamethoxam residues and stress in Chinese cabbage (Brassica chinensis L). J Agric Food Chem, 2020, 68(34):9180-9187.
    [100] Wang J, Chen J, Zhu WJ, et al. Isolation of the novel chiral insecticide paichongding (IPP) degrading strains and biodegradation pathways of RR/SS-IPP and SR/RS-IPP in an aqueous system. J Agric Food Chem, 2016, 64(40):7431-7437.
    [101] Cai ZQ, Zhang WJ, Li SS, et al. Microbial degradation mechanism and pathway of the novel insecticide paichongding by a newly isolated Sphingobacterium sp. P1-3 from soil. J Agric Food Chem, 2015, 63(15):3823-3829.
    [102] Fu QG, Zhang JB, Xu XY, et al. Diastereoselective metabolism of a novel cis-nitromethylene neonicotinoid paichongding in aerobic soils. Environ Sci Technol, 2013, 47(18):10389-10396.
    [103] Fu QG, Wang YC, Zhang JB, et al. Soil microbial effects on the stereoselective mineralization, extractable residue, bound residue, and metabolism of a novel chiral cis neonicotinoid, paichongding. J Agric Food Chem, 2013, 61(32):7689-7695.
    [104] Chen J, Zhou SM, Rong Y, et al. Pyrosequencing reveals bacterial communities and enzyme activities differences after application of novel chiral insecticide paichongding in aerobic soils. Appl Soil Ecol, 2017, 112:18-27.
    [105] Cai ZQ, Ma JT, Wang J, et al. Aerobic biodegradation kinetics and pathway of the novel cis-nitromethylene neonicotinoid insecticide paichongding in yellow loam and Huangshi soils. Appl Soil Ecol, 2016, 98:150-158.
    [106] Cai ZQ, Wang J, Ma JT, et al. Anaerobic degradation pathway of the novel chiral insecticide paichongding and its impact on bacterial communities in soils. J Agric Food Chem, 2015, 63(32):7151-7160.
    [107] 于福强, 黄耀师, 苏州, 等. 新颖杀虫剂氟啶虫胺腈. 农药, 2013, 52(10):753-755. Yu FQ, Huang YS, Su Z, et al. A novel insecticides sulfoxaflor. Agrochemicals, 2013, 52(10):753-755(in Chinese).
    [108] Yang WL, Dai ZL, Cheng X, et al. Sulfoxaflor degraded by Aminobacter sp. CGMCC 1.17253 through hydration pathway mediated by nitrile hydratase. J Agric Food Chem, 2020, 68(16):4579-4587.
    [109] Jeschke P, Nauen R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag Sci, 2008, 64(11):1084-1098.
    [110] Su WC, Zhou YH, Ma YQ, et al. N'-nitro-2-hydrocarbylidenehydrazine carboximidamides:design, synthesis, crystal structure, insecticidal activity, and structure-activity relationships. J Agric Food Chem, 2012, 60(20):5028-5034.
    [111] 唐振华. 新烟碱类杀虫剂的结构与活性及其药效基团. 现代农药, 2002, 1(1):1-6. Tang ZH. Structure-activity and pharmacophore of neonicotinoid insecticides. Mod Agrochem, 2002, 1(1):1-6(in Chinese).
    [112] Wang JQ, Tanaka Y, Ohno H, et al. Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624. Environ Pollut, 2019, 252(Pt A):856-862.
    [113] Dai ZL, Yang WL, Fan ZX, et al. Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere, 2021, 270:128670.
    [114] Sharma S, Singh B, Gupta VK. Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus. Environ Monit Assess, 2014, 186(11):7183-7193.
    [115] Kandil MM, Trigo C, Koskinen WC, et al. Isolation and characterization of a novel imidacloprid-degrading Mycobacterium sp. strain MK6 from an Egyptian soil. J Agric Food Chem, 2015, 63(19):4721-4727.
    [116] Anhalt JC, Moorman TB, Koskinen WC. Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Heal B, 2007, 42(5):509-514.
    [117] Hu GP, Zhao Y, Liu B, Song FQ, You MS. Isolation of an indigenous imidacloprid degrading bacterium and imidacloprid bioremediation. J Microbiol Biotechnol, 2013, 23(11):1617-1626.
    [118] Mohammed YMM, Badawy MEI. Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3. J Environ Sci Health B, 2017, 52(10):752-761.
    [119] Sun SL, Fan ZX, Zhao YX, et al. A novel nutrient deprivation-induced neonicotinoid insecticide acetamiprid degradation by Ensifer adhaerens CGMCC 6315. J Agric Food Chem, 2019, 67(1):63-71.
    [120] Guo L, Fang WW, Guo LL, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by actinomycetes Streptomyces canus CGMCC 13662 and characterization of the novel nitrile hydratase involved. J Agric Food Chem, 2019, 67(21):5922-5931.
    [121] Kanjilal T, Bhattacharjee C, Datta S. Utilization of S. aureus strain 502A in biodegradation of insecticide acetamiprid from wetland wastewater. Desalination Water Treat, 2016, 57(28):13190-13206.
    [122] Rana S, Jindal V, Mandal K, et al. Thiamethoxam
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈星茹,方诗琦,万爽,周雯雯,孙超,李骏. 可降解新烟碱类杀虫剂微生物及其代谢途径的研究进展[J]. 生物工程学报, 2022, 38(12): 4462-4497

复制
分享
文章指标
  • 点击次数:517
  • 下载次数: 2071
  • HTML阅读次数: 2143
  • 引用次数: 0
历史
  • 收稿日期:2022-06-01
  • 最后修改日期:2022-08-26
  • 在线发布日期: 2022-12-27
  • 出版日期: 2022-12-25
文章二维码
您是第6073461位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司