海藻糖强化高盐胁迫下异养硝化-好氧反硝化菌群的代谢机制
作者:
基金项目:

国家自然科学基金(51708077);重庆市自然科学基金(cstc2020jcyj-msxmX0566);重庆市教委科学技术研究计划(KJQN202001138);重庆理工大学研究生创新项目(clgycx20203091,clgycx20203073)


Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)菌是一类可在高盐环境脱氮的好氧微生物,但其工程应用效果不理想。海藻糖作为相容性溶质,通过参与调节细胞渗透压帮助微生物抵抗高盐胁迫,对提升高盐环境菌群的脱氮效率起重要作用。本研究通过启动膜曝气生物膜反应器(membrane aerobic biofilm reactor,MABR)富集HN-AD菌,设计添加150μmol/L海藻糖的C150实验组和未添加海藻糖的C0对照组,开展了外源性海藻糖对高盐胁迫下HN-AD菌群代谢的强化机制研究。反应器运行性能及群落结构分析结果显示,C150组相较C0组,NH4+-N、总氮(total nitrogen,TN)和化学需氧量(chemical oxygen demand,COD)去除率分别提高29.7%、28.0%和29.1%;以不动杆菌属(Acinetobacter)和假黄褐藻属(Pseudofulvimonas)为优势菌属的耐盐型HN-AD菌群总相对丰度在C150组达到66.8%、较C0组提高了18.2%,添加海藻糖促进高盐环境中耐性型HN-AD菌群富集并强化系统脱氮性能。代谢组学深度分析表明,外源性海藻糖加强脯氨酸合成,提高微生物对高盐胁迫的抵抗能力;通过调节细胞增殖信号通路(cGMP-PKG、PI3K-Akt)、磷脂代谢通路及氨酰基-tRNA合成通路的活性,促使甘油磷脂代谢物磷酸乙醇胺及嘌呤和嘧啶丰度上调,提升细菌聚集能力和细胞增殖,助推微生物在高盐环境生长;同时,添加海藻糖还加快三羧酸循环(tricarboxylic acid cycle,TCA cycle),为HN-AD菌群的碳、氮代谢提供更多电子供体与能量,进而优化系统脱氮性能。本研究结果为HN-AD菌在高盐高氮废水处理中的运用提供理论指导。

    Abstract:

    Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are aerobic microorganisms that can remove nitrogen under high-salt conditions, but their performance in practical applications are not satisfactory. As a compatible solute, trehalose helps microorganisms to cope with high salt stress by participating in the regulation of cellular osmotic pressure, and plays an important role in promoting the nitrogen removal efficiency of microbial populations in the high-salt environment. We investigated the mechanism of exogenous-trehalose-enhanced metabolism of HN-AD community under high-salt stress by starting up a membrane aerobic biofilm reactor (MABR) to enrich HN-AD bacteria, and designed a C150 experimental group with 150 μmol/L trehalose addition and a C0 control group without trehalose. The reactor performance and the community structure showed that NH4+-N, total nitrogen (TN) and chemical oxygen demand (COD) removal efficiency were increased by 29.7%, 28.0% and 29.1%, respectively. The total relative abundance of salt-tolerant HN-AD bacteria (with Acinetobacter and Pseudofulvimonas as the dominant genus) in the C150 group reached 66.8%, an 18.2% increase compared with that of the C0 group. This demonstrated that trehalose addition promoted the enrichment of salt-tolerant HN-AD bacteria in the high-salt environment to enhance the nitrogen removal performance of the system. In-depth metabolomics analysis showed that the exogenous trehalose was utilized by microorganisms to improve proline synthesis to increase resistance to high-salt stress. By regulating the activity of cell proliferation signaling pathways (cGMP-PKG, PI3K-Akt), phospholipid metabolism pathway and aminoacyl-tRNA synthesis pathway, the abundances of phosphoethanolamine, which was one of the glycerophospholipid metabolites, and purine and pyrimidine were up-regulated to stimulate bacterial aggregation and cell proliferation to promote the growth of HN-AD bacteria in the high-salt environment. Meanwhile, the addition of trehalose accelerated the tricarboxylic acid (TCA) cycle, which might provide more electron donors and energy to the carbon and nitrogen metabolisms of HN-AD bacteria and promote the nitrogen removal performance of the system. These results may facilitate using HN-AD bacteria in the treatment of high-salt and high-nitrogen wastewater.

    参考文献
    [1] Li PS, Chen Q, Dong H, et al. Effect of applying potentials on anaerobic digestion of high salinity organic wastewater. Sci Total Environ, 2022, 822:153416.
    [2] Shi XQ, Lefebvre O, Ng KK, et al. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour Technol, 2014, 153:79-86.
    [3] 张彦灼, 李军, 陈光辉, 等. NaCl对好氧颗粒污泥短程硝化反硝化的影响. 环境科学研究, 2015, 28(5):823-830. Zhang YZ, Li J, Chen GH, et al. Effects of NaCl concentration on partial nitrification and denitrification by aerobic granular sludge. Res Environ Sci, 2015, 28(5):823-830(in Chinese).
    [4] 李兴, 勾芒芒, 刘学峰, 等. 高盐废水处理现状及研究进展. 水处理技术, 2019, 45(5):6-10, 14. Li X, Gou MM, Liu XF, et al. Research status and progress on treatment of high-salt wastewater. Technol Water Treat, 2019, 45(5):6-10, 14(in Chinese).
    [5] Fu GP, Han JY, Yu TY, et al. The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. J Environ Manage, 2019, 238:1-9.
    [6] Chen Q, Liu CQ, Liu XY, et al. Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environ Res, 2020, 189:109884.
    [7] He HJ, Chen YJ, Li X, et al. Influence of salinity on microorganisms in activated sludge processes:a review. Int Biodeterior Biodegrad, 2017, 119:520-527.
    [8] 徐佳杰, 刘朋波, 陶春平, 等. 1,3-丙二醇发酵过程中盐浓度的胁迫作用. 生物工程学报, 2008, 24(6):1098-1102. Xu JJ, Liu PB, Tao CP, et al. 1,3-propanediol production under salt stress. Chin J Biotech, 2008, 24(6):1098-1102(in Chinese).
    [9] 王朝朝, 张欢, 闫立娜, 等. 高盐度冲击后厌氧氨氧化工艺恢复及运行特性. 中国给水排水, 2021, 37(3):16-23. Wang ZZ, Zhang H, Yan LN, et al. Recovery and operational characteristics of anammox process after high salinity shock. China Water Wastewater, 2021, 37(3):16-23(in Chinese).
    [10] Jiang MM, Westerholm M, Qiao W, et al. High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor. Energy, 2020, 193:116783.
    [11] 袁建华, 赵天涛, 彭绪亚. 极端条件下异养硝化-好氧反硝化菌脱氮的研究进展. 生物工程学报, 2019, 35(6):942-955. Yuan JH, Zhao TT, Peng XY. Advances in heterotrophic nitrification-aerobic denitrifying bacteria for nitrogen removal under extreme conditions. Chin J Biotech, 2019, 35(6):942-955(in Chinese).
    [12] Silva LCF, Lima HS, Sartoratto A, et al. Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system. Int Biodeterior Biodegrad, 2018, 130:1-7.
    [13] Pan ZL, Zhou J, Lin ZY, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour Technol, 2020, 301:122726.
    [14] Meng FS, Huang WW, Liu DF, et al. Application of aerobic granules-continuous flow reactor for saline wastewater treatment:granular stability, lipid production and symbiotic relationship between bacteria and algae. Bioresour Technol, 2020, 295:122291.
    [15] Huang JL, Cui YW, Yan JL, et al. Occurrence of heterotrophic nitrification-aerobic denitrification induced by decreasing salinity in a halophilic AGS SBR treating hypersaline wastewater. Chem Eng J, 2022, 431:134133.
    [16] Han F, Li X, Zhang MR, et al. Solid-phase denitrification in high salinity and low-temperature wastewater treatment. Bioresour Technol, 2021, 341:125801.
    [17] He Q, Kong XJ, Chai HX, et al. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater. Environ Technol, 2012, 33(13/14/15):1695-1699.
    [18] Vyrides I, Stuckey DC. Adaptation of anaerobic biomass to saline conditions:role of compatible solutes and extracellular polysaccharides. Enzyme Microb Technol, 2009, 44(1):46-51.
    [19] Vyrides I, Stuckey DC. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses:a review. Crit Rev Biotechnol, 2017, 37(7):865-879.
    [20] 杨振琳, 于德爽, 李津, 等. 海藻糖强化厌氧氨氧化耦合反硝化工艺处理高盐废水的脱氮除碳效能. 环境科学, 2018, 39(10):4612-4620. Yang ZL, Yu DS, Li J, et al. Enhanced nitrogen and carbon removal performance of simultaneous ANAMMOX and enitrification (SAD) with trehalose addition treating saline wastewater. Environ Sci, 2018, 39(10):4612-4620(in Chinese).
    [21] Liu M, Peng YZ, Wang SY, et al. Enhancement of anammox activity by addition of compatible solutes at high salinity conditions. Bioresour Technol, 2014, 167:560-563.
    [22] Gregory GJ, Boyd EF. Stressed out:bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J, 2021, 19:1014-1027.
    [23] Rath H, Sappa PK, Hoffmann T, et al. Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol, 2020, 22(8):3266-3286.
    [24] Wang JH, Xie GL, Qi X, et al. Kinetics of pentachlorophenol co-metabolism removal by micro-aeration sequencing batch reactor process. Korean J Chem Eng, 2022:1-10.
    [25] 罗晓静, 肖芃颖, 康宝文, 等. MABR快速富集HN-AD菌强化处理高氨氮废水. 环境工程, 2020, 38(9):106-112. Luo XJ, Xiao PY, Kang BW, et al. Performance of mabr with enhancement of rapid hn-ad bacteria enrichment in treating high ammonium nitrogen wastewater. Environ Eng, 2020, 38(9):106-112(in Chinese).
    [26] 康宝文, 肖芃颖, 周靖, 等. 生物膜层DO浓度对MABR中异养硝化-好氧反硝化的影响. 环境科学研究, 2021, 34(10):2397-2404. Kang BW, Xiao PY, Zhou J, et al. Effects of dissolved oxygen concentrations on heterotrophic nitrification-aerobic denitrification of MABR. Res Environ Sci, 2021, 34(10):2397-2404(in Chinese).
    [27] Gilcreas FW. Standard methods for the examination of water and waste water. Am J Public Health Nations Health, 1966, 56(3):387-388.
    [28] Hou TT, Zhao JM, Lei ZF, et al. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste. J Clean Prod, 2021, 314:127942.
    [29] Vanaporn M, Titball RW. Trehalose and bacterial virulence. Virulence, 2020, 11(1):1192-1202.
    [30] Yang Y, Yao YD, Li J, et al. Trehalose alleviated salt stress in tomato by regulating ROS metabolism, photosynthesis, osmolyte synthesis, and trehalose metabolic pathways. Front Plant Sci, 2022, 13:772948.
    [31] 金敏, 王景峰, 孔庆鑫, 等. 好氧异养硝化菌Acinetobacter sp. YY-5的分离鉴定及脱氮机理. 应用与环境生物学报, 2009, 15(5):692-697. Jin M, Wang JF, Kong QX, et al. Isolation and denitrification mechanism of an aerobic heterotrophic bacterium Acinetobacter sp. YY-5. Chin J Appl Environ Biol, 2009, 15(5):692-697(in Chinese).
    [32] Ali A, Wu ZZ, Li M, et al. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor. Bioresour Technol, 2021, 333:125154.
    [33] Wang HT, Guo L, Ren XM, et al. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. Bioresour Technol, 2022, 350:126891.
    [34] Wang YQ, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to PANoptosis:a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J, 2021, 19:4641-4657.
    [35] Goldbraikh D, Neufeld D, hypoxia-tolerance of juvenile grass carp Ctenopharyngodon idella. Aquaculture, 2016, 452:388-394.
    [55] Nagatani H, Shimizu M, Valentine RC. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol, 1971, 79(2):164-175.
    [56] Sahm H, Eggeling L, de Graaf AA. Pathway analysis and metabolic engineering in Coryneba驣乴er杩婵婭 g公敵杴am筩cu恭怼瘯衩甾縮耠乂iol Chem,吠2000, 38伱匨逹贯嬱0):89瘹匭吹谱挰伮甼br甾牛崵稷孝戠Wu MX, Zou Y, Yu YH, et al. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Food 衒婥s 卉敮婴, 刲朰儲1,笠14騷蠺輱10540戮刼獢驲騾聛戵耸繝耠癈副卮g 畓版崬稠子扡rk SJ, Moon SY, et al. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng, 2003, 83(7):854-863.
    [59] Fürch T, Hollmann R, Wittmann C, et al. Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates. Bioprocess Biosyst Eng, 2007, 30(1):47-59.
    [60] Kwong WK, Zheng H, Moran NA. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria. Nat Microbiol, 2017, 2:17067.
    [61] Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol, 2011, 2:165.nedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 2010, 62(6):414-428.
    [44] 蔡雪丽, 李洋, 宣文静, 等. 掺入大肠杆菌膜中的磷脂酰胆碱(PC)影响青霉素β-内酰胺酶的分泌. 微生物学报, 2008, 48(4):486-491. Cai XL, Li Y, Xuan WJ, et al. Incorporation of phosphatidylcholine into Escherichia coli membrane affects secretion of penicillin β-lactamase. Acta Microbiol Sin, 2008, 48(4):486-491(in Chinese).
    [45] LÜ YF, Pan JJ, Huo TR, et al. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Res, 2019, 163:114872.
    [46] Zhao YP, Liu SF, Jiang B, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia. Environ Sci Technol, 2018, 52(19):11285-11296.
    [47] Rajendrakumar CS, Suryanarayana T, Reddy AR. DNA helix destabilization by proline and betaine:possible role in the salinity tolerance process. FEBS Lett, 1997, 410(2/3):201-205.
    [48] 朱道辰, 刘杏荣. 相容性溶质四氢嘧啶及其羟基化衍生物的研究进展. 中国生物工程杂志, 2011, 31(2):95-101. Zhu DC, Liu XR. Compatible solutes ectoine and its derivate hydroxyectoine. China Biotechnol, 2011, 31(2):95-101(in Chinese).
    [49] 霍唐燃, 潘珏君, 刘思彤. 基于代谢组的厌氧氨氧化菌群对温度的响应机制. 微生物学通报, 2019, 46(8):1936-1945. Huo TR, Pan JJ, Liu ST. Metabolomics insight into the response mechanism of anammox consortia to temperature. Microbiol China, 2019, 46(8):1936-1945(in Chinese).
    [50] Ting L, Williams TJ, Cowley MJ, et al. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol, 2010, 12(10):2658-2676.
    [51] 张晓梅, 高宇洁, 杨玲, 等. 谷氨酸棒杆菌中氨基酸分泌转运蛋白及其代谢改造研究进展. 生物工程学报, 2020, 36(11):2250-2259. Zhang XM, Gao YJ, Yang L, et al. Amino acid exporters and metabolic modification of Corynebacterium glutamicum-a review. Chin J Biotech, 2020, 36(11):2250-2259(in Chinese).
    [52] Schubert C, Zedler S, Strecker A, et al. l-aspartate as a high-quality nitrogen source in Escherichia coli:regulation of l-aspartase by the nitrogen regulatory system and interaction of l-aspartase with GlnB. Mol Microbiol, 2021, 115(4):526-538.
    [53] Yoder PS, Huang X, Teixeira IA, et al. Effects of jugular infused methionine, lysine, and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows. J Dairy Sci, 2020, 103(3):2387-2404.
    [54] Gao YJ, Liu YJ, Chen XQ, et al. Effects of graded levels of histidine on growth performance, digested enzymes activities, erythrocyte osmotic fragility and
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭雷,肖芃颖,李龙山,陈爽,袁港. 海藻糖强化高盐胁迫下异养硝化-好氧反硝化菌群的代谢机制[J]. 生物工程学报, 2022, 38(12): 4536-4552

复制
分享
文章指标
  • 点击次数:287
  • 下载次数: 892
  • HTML阅读次数: 970
  • 引用次数: 0
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-06-14
  • 在线发布日期: 2022-12-27
  • 出版日期: 2022-12-25
文章二维码
您是第5991443位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司