大肠杆菌转酮醇酶分子改造及催化酒石酸半醛合成
作者:
基金项目:

浙江省大学生科技创新活动计划(新苗人才计划)(2021R404051)


Molecular engineering of transketolase from Escherichia coli and tartaric semialdehyde biosynthesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    转酮醇酶(transketolase,TK,EC. 2.2.1.1)是一种焦磷酸硫胺素和二价阳离子依赖性酶,可催化二碳单位的转移,可逆形成C–C键,在多酶催化生产化学品、药物前体和不对称合成方面有广泛应用。文中以大肠杆菌(Escherichia coli)K12转酮醇酶TKTA为研究对象,通过定点饱和突变和组合突变提升对非磷酸化底物的反应活性,并探索突变酶TKTA_M催化合成酒石酸半醛。结果表明:突变酶TKTA_M(R358I/H461S/R520Q)最适反应温度为32℃,最适反应pH为7.0,以d-甘油醛为受体底物的比酶活为(6.57±0.14)U/mg,是野生型比酶活((0.71±0.02)U/mg)的9.25倍。在酶学性质研究的基础上,设计20mL的反应体系,以50mmol/L5-酮基-d-葡萄糖酸和50mmol/L非磷酸化乙醇醛为底物,TKTA_M催化合成酒石酸半醛,最终酒石酸半醛的产量为3.71g,摩尔转化率为55.34%。研究结果为生物质制备l-(+)-酒石酸提供数据支撑,同时为转酮醇酶催化非磷酸化底物提供了借鉴。

    Abstract:

    Transketolase (EC 2.2.1.1, TK) is a thiamine diphosphate-dependent enzyme that catalyzes the transfer of a two-carbon hydroxyacetyl unit with reversible C–C bond cleavage and formation. It is widely used in the production of chemicals, drug precursors, and asymmetric synthesis by cascade enzyme catalysis. In this paper, the activity of transketolase TKTA from Escherichia coli K12 on non-phosphorylated substrates was enhanced through site-directed saturation mutation and combined mutation. On this basis, the synthesis of tartaric semialdehyde was explored. The results showed that the optimal reaction temperature and pH of TKTA_M (R358I/H461S/R520Q) were 32℃ and 7.0, respectively. The specific activity on d-glyceraldehyde was (6.57±0.14) U/mg, which was 9.25 times higher than that of the wild type ((0.71±0.02) U/mg). Based on the characterization of TKTA_M, tartaric acid semialdehyde was synthesized with 50 mmol/L 5-keto-d-gluconate and 50 mmol/L non-phosphorylated ethanolaldehyde. The final yield of tartaric acid semialdehyde was 3.71 g with a molar conversion rate of 55.34%. Hence, the results may facilitate the preparation of l-(+)-tartaric acid from biomass, and provide an example for transketolase-catalyzed non-phosphorylated substrates.

    参考文献
    [1] 金蕾蕾, 陈方磊, 王晓钟, 等. dl-酒石酸的合成工艺研究. 高校化学工程学报, 2020, 34(5):1235-1242. Jin LL, Chen FL, Wang XZ, et al. Study on the synthetic process of dl-tartaric acid. J Chem Eng Chin Univ, 2020, 34(5):1235-1242(in Chinese).
    [2] Bao WN, Chen Y, Liao HX, et al. Isolation of Penicillium expansum WH-3 for the production of L(+)-tartaric acid. J Zhejiang Univ Sci B, 2020, 21(10):835-840.
    [3] 李永泉, 谢志鹏, 潘海峰, 等. L-酒石酸高效生物合成技术及产业化, 中国食品科学技术学会第十一届年会论文摘要集, 2014, 212-213. Li YQ, Xie ZP, Pan HF, et al. Efficient biosynthesis and industrialization of L-tartaric acid. Abstract of 11thAnnual Meeting of CIFST, 2014, 212-213(in Chinese).
    [4] Herrmann U, Merfort M, Jeude M, et al. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol, 2004, 64(1):86-90.
    [5] Elfari M, Ha SW, Bremus C, et al. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Appl Microbiol Biotechnol, 2005, 66(6):668-674.
    [6] Merfort M, Herrmann U, Ha SW, et al. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Biotechnol J, 2006, 1(5):556-563.
    [7] Ano Y, Shinagawa E, Adachi O, et al. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans. Biosci Biotechnol Biochem, 2011, 75(3):586-589.
    [8] Saichana I, Moonmangmee D, Adachi O, et al. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol, 2009, 75(13):4240-4247.
    [9] 李博义, 潘海峰, 孙伟荣, 等. 5-酮基-D-葡萄糖酸发酵生产的工艺条件优化. 生物工程学报, 2014, 30(9):1486-1490. Li BY, Pan HF, Sun WR, et al. Optimization of the fermentation conditions for 5-keto-D-gluconic acid production. Chin J Biotech, 2014, 30(9):1486-1490(in Chinese).
    [10] 谭之磊, 王洪翠, 魏彧翘, 等. 碳源和氮源对5-酮基-葡萄糖酸生成的影响. 生物工程学报, 2014, 30(1):76-82. Tan ZL, Wang HC, Wei YQ, et al. Effects of carbon and nitrogen sources on 5-keto-gluconic acid production. Chin J Biotech, 2014, 30(1):76-82(in Chinese).
    [11] Li YY, Jia SR, Zhong C, et al. Scale-up of 5-keto-gluconic acid production by Gluconobacter oxydans HGI-1. Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:305-312.
    [12] Yuan JF, Wu MB, Lin JP, et al. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy. J Biosci Bioeng, 2016, 122(1):10-16.
    [13] Yuan JF, Wu MB, Lin JP, et al. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM 2343 for boosting 5-keto-D-gluconic acid accumulation. BMC Biotechnol, 2016, 16(1):42.
    [14] Matzerath I, Kläui W, Klasen R, et al. Vanadate catalysed oxidation of 5-keto-D-gluconic acid to tartaric acid:the unexpected effect of phosphate and carbonate on rate and selectivity. Inorganica Chimica Acta, 1995, 237(1/2):203-205.
    [15] Hoshino T, Tazoe M, Kobayashi S, et al. Process for production of organic acids:WO, 2011001696. 2011-01-06.
    [16] Yuan JF, Wu MB, Lin JP, et al. Selective oxidation of 5-keto-D-gluconate to L-(+)-tartaric acid on transition metal chelate catalyst. Inorganica Chimica Acta, 2016, 450:251-257.
    [17] DeBolt S, Cook DR, Ford CM. L-tartaric acid synthesis from vitamin C in higher plants. PNAS, 2006, 103(14):5608-5613.
    [18] Jia Y, Burbidge CA, Sweetman C, et al. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in L -tartaric acid biosynthesis from vitamin C in Vitis vinifera. J Biol Chem, 2019, 294(44):15932-15946.
    [19] Melino VJ, Soole KL, Ford CM. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol, 2009, 9:145.
    [20] Burbidge CA, Ford CM, Melino VJ, et al. Biosynthesis and cellular functions of tartaric acid in grapevines. Front Plant Sci, 2021, 12:643024.
    [21] Salusjärvi T, Povelainen M, Hvorslev N, et al. Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for t?????????側瑩??????????ぴ????扣牯?孡??崠??愠桡爠潲浥楣?剭剢????潴爠爼楩猾?偳???慲物瑣楨湩敡稠?呯潬物爼支獩 ̄删???敡瑩?愮氠??印瑬爠畍捩瑣畲牯慢汩?獬琠慂扩楯汴楥瑣票?潯晬??椲???挬漠氶椵??椩?″琰父愭渳猱欴攮琼潢汲愾獛攲′瑝漠?瑩敫浮灥敲爠慃琬甠牍敥?慨湡摬?灩??搠敌測愠瑎畩牬慳瑳楯潮渠?????椠潡瑬攮挠案湩潳氱?″㈠ど?ㄠ??????????び???????扥爠?孳??嵥??敩捲煥畤攠瑦?????潢汳瑴敲?????敥浣畯祧湮捩歴?????桮敤洠潣敡湴穡祬浹慳瑩楳挮?獅祵湲琠桊攠獂楩獯?潨晥???搱改漹砵礬???昳爨申挩琺漷猵攰?愷渵搵???摲放潛砲礳???獩潢牢扥潲獴攠?畇猬椠湓来?瑵牳慳湩猠歔攬琠潃汯慳獴敥??呯敥琠牓慊栬攠摥牴漠湡??ㄠ??????づ?㈠??????????????扲牡?孳??嵴??祡汳敥猠??????湴摹爠畯汮椠獮?偮???????坯桲楹瑬敡獴楥摤攠獳???????瑥牳愮渠獊欠敂瑩潯汴慥獣敨?扯慬猬攠搲‰猰礷測琠栱攳猱椨猴?漺昴′????攲砮漼?扲爾敛瘲椴捝漠浈楩湢??呲整琠牅慇栬攠摓牥潮湵??敩琠瑔??????????????????????????扥牤?孥??嵬??敩湯歮攠獯?匠??卡潮湳湫敥睴慯汬摡?啥???慢摳畴牲?剴??敳瑰?慣汩????獴浹愠汴汯?摡敲捤牳攠慡獮攠?潬晩?灨污慴獩瑣椠摡?瑤牥慨湹獤步攮琠潊氠慂獩敯?慥捣瑨楮癯楬琬礠′椰渰?愬渠琱椳猴攨渳猯攴?琺漲戴愰挭挲漴‵琮爼慢湲猾晛漲爵浝愠湚瑨獯?栠慃獑?搠牓慡浲慡瑶楡据?敮映晔攬挠瑌獯?潩湬?灩栦漣琲漳猲礻湲瑥栠敍猬椠獥?愠湡摬?瀠桓敥湣祯汮灤爭潧灥慮湥潲楡摴?浯敮琠慥扮潧汩楮獥浥??偮汧愠湯瑦??攠汴汨???はび??????????????????扥爠?孔??嵧??漩猠桦楯?匠??卩楰湨条桴??删??卤慥煨楹扤?唠??散瑥?慴汯???摷敩湴瑨椠晥楩捴慨瑥楲漠湩?潰晲?灶潥瑤攠湯瑲椠慲汥??楲?健??楳????楯?晥慬汥捣楴灩慶物畴浹??楃??瑭牢慩湯獣歨敥瑭漬氠愲猰攱?椬渠栱椸戨椵琩漺爴猵?瀭栴愵爹洮愼换潲瀾桛漲父敝?摒敡獮楯杵湸???椠?楡湲?獥楥氠楓捋漬??楩??獊捆爬攠敥湴椠湡杬?愠湅摮?摡潮捣步業湥杮?猠瑯畦搠楴敨獥?????楴潲灡桴祥猠??桯数浥?????ひ???????????????扥牭?孩??嵨?卭瀬爠攲渰朱攲爬?????倳漩栺氱????匱礹渳琱栮攼瑢楲挾?瀲漷瑝攠湙瑩椠慄氬?潄晥?瑡桭楡慮浩椠湔?搠楁灢桤潯獵灬栭慚瑡敢?摲攠灊攬渠摥整渠瑡?攮渠穁礠浰效猭?????漠汨??慨琭慴汨????湨穰祵浴?????????????????????ase:fingerprinting of substrate tolerance and quantitative kinetics. Chembiochem, 2012, 13(15):2290-2300.
    [28] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning:A Laboratory Manual. 4th ed. New York:Cold Spring Harbor Laboratory Press, 2014.
    [29] 周超强. 耐热转酮酶的定向进化及其在手性羟基酮合成中的应用[D]. 上海:华东理工大学, 2016. Zhou CQ. Directed evolution of thermostable transketolase for its synthetic application of chiral ketol-type[D]. Shanghai:East China University of Science and Technology, 2016(in Chinese).
    [30] Golbik R, Meshalkina LE, Sandalova T, et al. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae. FEBS J, 2005, 272(6):1326-1342.
    [31] Littlechild J, Turner N, Hobbs G, et al. Crystallization and preliminary X-ray crystallographic data with Escherichia coli transketolase. Acta Crystallogr D Biol Crystallogr,
    引证文献
引用本文

王剑峰,李文英,辛振麒,冯文娜,孙晓明,袁建锋. 大肠杆菌转酮醇酶分子改造及催化酒石酸半醛合成[J]. 生物工程学报, 2022, 38(12): 4615-4629

复制
分享
文章指标
  • 点击次数:537
  • 下载次数: 1207
  • HTML阅读次数: 1303
  • 引用次数: 0
历史
  • 收稿日期:2022-03-24
  • 最后修改日期:2022-05-16
  • 在线发布日期: 2022-12-27
  • 出版日期: 2022-12-25
文章二维码
您是第6155644位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司