School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China;School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China;School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, Henan, China;Henan International Joint Laboratory of Recombiant Pharmaceutical Protein Expression System, Xinxiang 453003, Henan, China 在期刊界中查找 在百度中查找 在本站中查找
Chinese hamster ovary (CHO) cells play an irreplaceable role in biopharmaceuticals because the cells can be adapted to grow in suspension cultures and are capable of producing high quality biologics exhibiting human-like post-translational modifications. However, gene expression regulation such as transgene silencing and epigenetic modifications may reduce the recombinant protein production due to the decrease of expression stability of CHO cells. This paper summarized the role of epigenetic modifications in CHO cells, including DNA methylation, histone modification and miRNA, as well as their effects on gene expression regulation.
[1] Walsh G. Biopharmaceutical benchmarks 2018[J]. Nature Biotechnology, 2018, 36(12):1136-1145.
[2] BLAS M, FRANCKY A, JAMNIKAR U, GASER D, BAEBLER Š, BLEJEC A, GRUDEN K. Transcriptomic variation between different Chinese hamster ovary cell lines[J]. Biotechnology Letters, 2015, 37(9):1737-1745.
[3] RITACCO FV, WU YQ, KHETAN A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells:history, key components, and optimization strategies[J]. Biotechnology Progress, 2018, 34(6):1407-1426.
[4] SHEN CC, LIN MW, NGUYEN BKT, CHANG CW, SHIH JR, NGUYEN MTT, CHANG YH, HU YC. CRISPR-Cas13d for gene knockdown and engineering of CHO cells[J]. ACS Synthetic Biology, 2020, 9(10):2808-2818.
[5] HASTINGS PJ, LUPSKI JR, ROSENBERG SM, IRA G. Mechanisms of change in gene copy number[J]. Nature Reviews Genetics, 2009, 10(8):551-564.
[6] LI SZ, TOLLEFSBOL TO. DNA methylation methods:global DNA methylation and methylomic analyses[J]. Methods, 2021, 187:28-43.
[7] GARCIA-MARTINEZ L, ZHANG YS, NAKATA Y, CHAN HL, MOREY L. Epigenetic mechanisms in breast cancer therapy and resistance[J]. Nature Communications, 2021, 12:1786.
[8] WEINGUNY M, KLANERT G, EISENHUT P, LEE I, TIMP W, BORTH N. Subcloning induces changes in the DNA-methylation pattern of outgrowing Chinese hamster ovary cell colonies[J]. Biotechnology Journal, 2021, 16(6):e2000350.
[9] HERNANDEZ I, DHIMAN H, KLANERT G, JADHAV V, AUER N, HANSCHO M, BAUMANN M, ESTEVE-CODINA A, DABAD M, GÓMEZ J, ALIOTO T, MERKEL A, RAINERI E, HEATH S, RICO D, BORTH N. Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture[J]. Biotechnology and Bioengineering, 2019, 116(3):677-692.
[10] WEINGUNY M, EISENHUT P, KLANERT G, VIRGOLINI N, MARX N, JONSSON A, IVANSSON D, LÖVGREN A, BORTH N. Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities[J]. Biotechnology and Bioengineering, 2020, 117(11):3435-3447.
[11] SPENCER S, GUGLIOTTA A, KOENITZER J, HAUSER H, WIRTH D. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation[J]. Journal of Biotechnology, 2015, 195:15-29.
[12] 陈奇娜, 王斌, 郭庆, 王静, 黄伟, 王霄, 纪华. 甲基化酶DNMT3B基因敲除的CHO-K1细胞系构建[J]. 昆明学院学报, 2021, 43(6):114-119. CHEN QN, WANG B, GUO Q, WANG J, HUANG W, WANG X, JI H. Construction of CHO-K1 cell line with DNMT3B gene knockout[J]. Journal of Kunming University, 2021, 43(6):114-119(in Chinese).
[13] BIRD A. The dinucleotide CG as a genomic signalling module[J]. Journal of Molecular Biology, 2011, 409(1):47-53.
[14] SCHÜBELER D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321- 326.
[15] MOORE LD, LE T, FAN GP. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1):23-38.
[16] DAHODWALA H, LEE KH. The fickle CHO:a review of the causes, implications, and potential alleviation of the CHO cell line instability problem[J]. Current Opinion in Biotechnology, 2019, 60:128-137.
[17] BARNES LM, BENTLEY CM, DICKSON AJ. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells[J]. Biotechnology and Bioengineering, 2004, 85(2):115-121.
[18] FANN CH, GUIRGIS F, CHEN G, LAO MS, PIRET JM. Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells[J]. Biotechnology and Bioengineering, 2000, 69(2):204-212.
[19] KIM M, O'CALLAGHAN PM, DROMS KA, JAMES DC. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies[J]. Biotechnology and Bioengineering, 2011, 108(10):2434-2446.
[20] MARX N, DHIMAN H, SCHMIEDER V, FREIRE CM, NGUYEN LN, KLANERT G, BORTH N. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells[J]. Metabolic Engineering, 2021, 66:268-282.
[21] MORITZ B, WOLTERING L, BECKER PB, GÖPFERT U. High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells[J]. Biotechnology Progress, 2016, 32(3):776-786.
[22] HUGHES AL, KELLEY JR, KLOSE RJ. Understanding the interplay between CpG island- associated gene promoters and H3K4 methylation[J]. Biochimica et Biophysica Acta:BBA-Gene Regulatory Mechanisms, 2020, 1863(8):194567.
[23] JURKOWSKA RZ, JURKOWSKI TP, JELTSCH A. Structure and function of mammalian DNA methyltransferases[J]. Chembiochem:a European Journal of Chemical Biology, 2011, 12(2):206-222.
[24] CHUSAINOW J, YANG YS, YEO JHM, TOH PC, ASVADI P, WONG NSC, YAP MGS. A study of monoclonal antibody-producing CHO cell lines:What makes a stable high producer?[J]. Biotechnology and Bioengineering, 2009, 102(4):1182-1196.
[25] MARIATI, YEO JHM, KOH EYC, HO SCL, YANG YS. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells[J]. Biotechnology Progress, 2014, 30(3):523-534.
[26] HISANO M, OHTA H, NISHIMUNE Y, NOZAKI M. Methylation of CpG dinucleotides in the open reading frame of a testicular germ cell-specific intronless gene, Tact1/Actl7b, represses its expression in somatic cells[J]. Nucleic Acids Research, 2003, 31(16):4797-4804.
[27] DALLE B, RUBIN JE, ALKAN O, SUKONNIK T, PASCERI P, YAO SY, PAWLIUK R, LEBOULCH P, ELLIS J. eGFP reporter genes silence LCRβ-globin transgene expression via CpG dinucleotides[J]. Molecular Therapy, 2005, 11(4):591-599.
[28] YANG YS, MARIATI, CHUSAINOW J, YAP MGS. DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines[J]. Journal of Biotechnology, 2010, 147(3/4):180-185.
[29] JIA YL, GUO X, LU JT, WANG XY, QIU LL, WANG TY. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability[J]. Journal of Cellular and Molecular Medicine, 2018, 22(9):4106-4116.
[30] WANG XY, YI DD, WANG TY, WU YF, CHAI YR, XU DH, ZHAO CP, SONG C. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells[J]. Journal of Cellular Biochemistry, 2019, 120(9):15661-15670.
[31] WARRINGTON JA, NAIR A, MAHADEVAPPA M, TSYGANSKAYA M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes[J]. Physiological Genomics, 2000, 2(3):143-147.
[32] VEITH N, ZIEHR H, MACLEOD RAF, REAMON- BUETTNER SM. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines[J]. BMC Biotechnology, 2016, 16:6.
[33] RUNNING DEER J, ALLISON DS. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene[J]. Biotechnology Progress, 2004, 20(3):880-889.
[34] PATEL NA, ANDERSON CR, TERKILDSEN SE, DAVIS RC, PACK LD, BHARGAVA S, CLARKE HRG. Antibody expression stability in CHO clonally derived cell lines and their subclones:role of methylation in phenotypic and epigenetic heterogeneity[J]. Biotechnology Progress, 2018, 34(3):635-649.
[35] HUANG H, LIN S, GARCIA BA, ZHAO YM. Quantitative proteomic analysis of histone modifications[J]. Chemical Reviews, 2015, 115(6):2376-2418.
[36] ZHAO Q, RANK G, TAN YT, LI HT, MORITZ RL, SIMPSON RJ, CERRUTI L, CURTIS DJ, PATEL DJ, ALLIS CD, CUNNINGHAM JM, JANE SM. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing[J]. Nature Structural & Molecular Biology, 2009, 16(3):304-311.
[37] LI YL, CHEN X, LU C. The interplay between DNA and histone methylation:molecular mechanisms and disease implications[J]. EMBO Reports, 2021, 22(5):e51803.
[38] SHVEDUNOVA M, AKHTAR A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2022, 23(5):329-349.
[39] POZIELLO A, NEBBIOSO A, STUNNENBERG HG, MARTENS JHA, CARAFA V, ALTUCCI L. Recent insights into Histone Acetyltransferase-1:biological function and involvement in pathogenesis[J]. Epigenetics, 2021, 16(8):838-850.
[40] 陈立伟, 胡承. 组蛋白乙酰化与糖尿病[J]. 中华糖尿病杂志, 2020, 12(12):1053-1057. CHEN LW, HU C Histone acetylation and diabetes[J]. Chinese Journal of Diabetes, 2020,12(12):1053-1057(in Chinese).
[41] SHAID S, BRANDTS CH, SERVE H, DIKIC I. Ubiquitination and selective autophagy[J]. Cell Death & Differentiation, 2013, 20(1):21-30.
[42] M KHALIL A, WAHLESTEDT C. Epigenetic mechanisms of gene regulation during mammalian spermatogenesis[J]. Epigenetics, 2008, 3(1):21-27.
[43] RUTHENBURG AJ, ALLIS CD, WYSOCKA J. Methylation of lysine 4 on histone H3:intricacy of writing and reading a single epigenetic mark[J]. Molecular Cell, 2007, 25(1):15-30.
[44] MATSUYAMA R, YAMANO N, KAWAMURA N, OMASA T. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1[J]. Journal of Bioscience and Bioengineering, 2017, 123(3):382-389.
[45] YOUNG MD, WILLSON TA, WAKEFIELD MJ, TROUNSON E, HILTON DJ, BLEWITT ME, OSHLACK A, MAJEWSKI IJ. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity[J]. Nucleic Acids Research, 2011, 39(17):7415-7427.
[46] DAWSON MA, KOUZARIDES T. Cancer epigenetics:From mechanism to therapy[J]. Cell, 2012, 150(1):12-27.
[47] O'GEEN H, BATES SL, CARTER SS, NISSON KA, HALMAI J, FINK KD, RHIE SK, FARNHAM PJ, SEGAL DJ. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context- dependent manner[J]. Epigenetics & Chromatin, 2019, 12(1):1-20.
[48] MARIANI MR, CARPANETO EM, ULIVI M, ALLFREY VG, BOFFA LC. Correlation between butyrate-induced histone hyperacetylation turn-over and c-myc expression[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2003, 86(2):167-171.
[49] FISCHER S, PAUL AJ, WAGNER A, MATHIAS S, GEISS M, SCHANDOCK F, DOMNOWSKI M, ZIMMERMANN J, HANDRICK R, HESSE F, OTTE K. MiR-2861 as novel HDAC5 inhibitor in CHO cells enhances productivity while maintaining product quality[J]. Biotechnology and Bioengineering, 2015, 112(10):2142-2153.
[50] PAREDES V, PARK JS, JEONG Y, YOON J, BAEK K. Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation[J]. Biotechnology Letters, 2013, 35(7):987-993.
[51] WANG ZB, ZANG CZ, ROSENFELD JA, SCHONES DE, BARSKI A, CUDDAPAH S, CUI KR, ROH TY, PENG WQ, ZHANG MQ, ZHAO KJ. Combinatorial patterns of histone acetylations and methylations in the human genome[J]. Nature Genetics, 2008, 40(7):897-903.
[52] LAN F, SHI Y. Epigenetic regulation:methylation of histone and non-histone proteins[J]. Science in China Series C:Life Sciences, 2009, 52(4):311-322.
[53] FISCHER S, HANDRICK R, OTTE K. The art of CHO cell engineering:a comprehensive retrospect and future perspectives[J]. Biotechnology Advances, 2015, 33(8):1878-1896.
[54] DOUDNA JA. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794):229-236.
[55] AMANN T, SCHMIEDER V, FAUSTRUP KILDEGAARD H, BORTH N, ANDERSEN MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms[J]. Biotechnology and Bioengineering, 2019, 116(10):2778-2796.
[56] AMADI IM, AGRAWAL V, CHRISTIANSON T, BARDLIVING C, SHAMLOU P, LEBOWITZ JH. Inhibition of endogenous miR-23a/miR-377 in CHO cells enhances difficult-to-express recombinant lysosomal sulfatase activity[J]. Biotechnology Progress, 2020, 36(3):e2974.
[57] 么欣彤, 孙善月, 刘雅晴, 石乐明, 郑媛婷. 一种高通量自动化血浆miRNA文库构建方法及其跨批次性能评估[J]. 复旦学报(医学版), 2022, 49(3):425-434. YAO XT, SUN SY, LIU YQ, SHI LM, ZHENG YT. A high-throughput and automated method for plasma microRNA library preparation and evaluation of its cross-batch performance[J]. Fudan University Journal of Medical Sciences, 2022, 49(3):425-434(in Chinese).
[58] INWOOD S, ABAANDOU L, BETENBAUGH M, SHILOACH J. Improved protein expression in HEK293 cells by over-expressing miR-22 and knocking-out its target gene, HIPK1[J]. New Biotechnology, 2020, 54:28-33.
[59] HERNÁNDEZ BORT JA, HACKL M, HÖFLMAYER H, JADHAV V, HARREITHER E, KUMAR N, ERNST W, GRILLARI J, BORTH N. Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures[J]. Biotechnology Journal, 2012, 7(4):500-515.
[60] KLANERT G, JADHAV V, SHANMUKAM V, DIENDORFER A, KARBIENER M, SCHEIDELER M, BORT JH, GRILLARI J, HACKL M, BORTH N. A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines[J]. Journal of Biotechnology, 2016, 235:150-161.
[61] LOH WP, LOO B, ZHOU LH, ZHANG PQ, LEE DY, YANG YS, LAM KP. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells[J]. Biotechnology Journal, 2014, 9(9):1140-1151.
[62] ŠVAB Ž, BRAGA L, GUARNACCIA C, LABIK I, HERZOG J, BARALLE M, GIACCA M, SKOKO N. High throughput miRNA screening identifies miR-574-3p hyperproductive effect in CHO cells[J]. Biomolecules, 2021, 11(8):1125.
[63] LIU HN, DONG WH, LIN Y, ZHANG ZH, WANG TY. The effect of microRNA on the production of recombinant protein in CHO cells and its mechanism[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:832065.