多级孔金属-有机框架固定化酶的研究进展
作者:
基金项目:

河南高校青年骨干教师培养计划(2021GGJS047)


Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • | | | |
  • 文章评论
    摘要:

    金属-有机框架(metal-organic frameworks, MOFs)作为酶固定化的优良载体,为生物催化反应提供优越的物理和化学保护。近年来,多级孔金属-有机框架(hierarchical porous metal-organic frameworks, HP-MOFs)由于其独特的结构优势,在固定化酶方面显示出更大的潜力。到目前为止,已经开发了各类具有原生多级孔或缺陷多级孔的HP-MOFs用于酶的固定化研究,并且使得固定化酶在催化活性、稳定性和重复利用性等方面得到了显著增强。本文系统总结了HP-MOFs用于固定化酶的各种策略,介绍了HP-MOFs固定化酶(enzyme@HP-MOFs)在催化合成、生物传感、生物医药等领域的最新应用进展。最后,讨论并展望了HP-MOFs固定化酶这一领域所面临的挑战和机遇。

    Abstract:

    As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.

    参考文献
    [1] BIE J, SEPODES B, FERNANDES PCF, RIBEIRO MHL. Enzyme immobilization and co-immobilization:main framework, advances and some applications[J]. Processes, 2022, 10(3):494.
    [2] HECKMANN CM, PARADISI F. Looking back:a short history of the discovery of enzymes and how they became powerful chemical tools[J]. Chemcatchem, 2020, 12(24):6082-6102.
    [3] WACKETT LP. Microbial industrial enzymes[J]. Microbial Biotechnology, 2019, 12(2):405-406.
    [4] WU SK, SNAJDROVA R, MOORE JC, BALDENIUS K, BORNSCHEUER UT. Biocatalysis:enzymatic synthesis for industrial applications[J]. Angewandte Chemie-international Edition, 2021, 60(1):88-119.
    [5] TANG KHD, LOCK SSM, YAP PS, CHEAH KW, CHAN YH, YIIN CL, KU AZE, LOY ACM, CHIN BLF, CHAI YH. Immobilized enzyme/microorganism complexes for degradation of microplastics:a review of recent advances, feasibility and future prospects[J]. Science of the Total Environment, 2022, 832:1-21.
    [6] ZHANG HC, FENG MM, FANG YP, WU Y, LIU Y, ZHAO YY, XU JX. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry[J]. Critical Reviews in Food Science and Nutrition, 2022, 6:1-19.
    [7] NIRANTAR SR. Directed evolution methods for enzyme engineering[J]. Molecules, 2021, 26(18):1-14.
    [8] PEDERSEN JN, ZHOU Y, GUO Z, PEREZ B. Genetic and chemical approaches for surface charge engineering of enzymes and their applicability in biocatalysis:a review[J]. Biotechnology and Bioengineering, 2019, 116(7):1795-1812.
    [9] MADHAVAN A, ARUN KB, BINOD P, SIROHI R, TARAFDAR A, RESHMY R, AWASTHI MK, SINDHU R. Design of novel enzyme biocatalysts for industrial bioprocess:harnessing the power of protein engineering, high throughput screening and synthetic biology[J]. Bioresource Technology, 2021, 325:124617.
    [10] SHELDON RA, BASSO A, BRADY D. New frontiers in enzyme immobilisation:robust biocatalysts for a circular bio-based economy[J]. Chemical Society Reviews, 2021, 50(10):5850-5862.
    [11] PATEL H, RAWTANI D, AGRAWAL YK. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using acetylcholinesterase-a review[J]. Trends in Food Science & Technology, 2019, 85:78-91.
    [12] KUMAR A, PARK GD, PATEL SKS, KONDAVEETI S, OTARI S, ANWAR MZ, KALIA VC, SINGH Y, KIM SC, CHO BK, SOHN JH, KIM DR, KANG YC, LEE JK. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization[J]. Chemical Engineering Journal, 2019, 359:1252-1264.
    [13] THAKUR K, ATTRI C, SETH A. Nanocarriers-based immobilization of enzymes for industrial application[J]. 3 Biotech, 2021, 11(10):427.
    [14] FENG Y, XU Y, LIU S, WU D, SU Z, CHEN G, LIU J, LI G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing[J]. Coordination Chemistry Reviews, 2022, 459:214414.
    [15] FREUND R, ZAREMBA O, DINCA M, ARNAUTS G, AMELOOT R, SKORUPSKII G, BAVYKINA A, GASCON J, EJSMONT A, GOSCIANSKA J, KALMUTZKI M, LACHELT U, PLOETZ E, DIERCKS CS, WUTTKE S. The current status of mof and COF applications[J]. Angewandte Chemie- international Edition, 2021, 60(45):23975-24001.
    [16] QIAN QH, ASINGER PA, LEE MJ, HAN G, RODRIGUEZ KM, LIN S, BENEDETTI FM, WU AX, CHI WS, SMITH ZP. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16):8161-8266.
    [17] CAO J, LI XJ, TIAN HQ. Metal-organic framework (MOF)-based drug delivery[J]. Current Medicinal Chemistry, 2020, 27(35):5949-5969.
    [18] 徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(S2):285-293. XU R, LI ZH, WU YN, LI FT. Research advances in enzyme immobilization on metal-organic frameworks[J]. Materials Reports, 2021, 35(72):285-293.
    [19] BILAL M, ADEEL M, RASHEED T, IQBAL HMN. Multifunctional metal-organic frameworks-based biocatalytic platforms:recent developments and future prospects[J]. Journal of Materials Research and Technology, 2019, 8(2):2359-2371.
    [20] CAI G, YAN P, ZHANG L, ZHOU HC, JIANG HL. Metal-organic framework-based hierarchically porous materials:synthesis and applications[J]. Chemical Reviews, 2021, 121(20):12278-12326.
    [21] HUANG S, KOU X, SHEN J, CHEN G, OUYANG G. "Armor-plating" enzymes with metal-organic frameworks (MOFs)[J]. Angewandte Chemie- international Edition, 2020, 59(23):8786-8798.
    [22] ZHANG X, TU R, LU Z, PENG J, HOU C, WANG Z. Hierarchical mesoporous metal-organic frameworks encapsulated enzymes:progress and perspective[J]. Coordination Chemistry Reviews, 2021, 443.
    [23] LAN TH, WANG Q, LU CY, LI JH, LI JL, CHEN Y, LI LB, YANG JF, LI JP. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy[J]. Particuology, 2023, 74:9-17.
    [24] PISKLAK TJ, MACIAS M, COUTINHO DH, HUANG RS, BALKUS KJ. Hybrid materials for immobilization of MP-11 catalyst[J]. Topics in Catalysis, 2006, 38(4):269-278.
    [25] YE N, KOU X, SHEN J, HUANG S, CHEN G, OUYANG G. Metal-organic frameworks:a new platform for enzyme immobilization[J]. Chembiochem, 2020, 21(18):2585-2590.
    [26] 杜英杰, 贾晓彤, 唐秀明, 杜占鑫, 崔建东, 贾士儒. 基于金属有机框架材料酶的固定化策略及其应用[J]. 生物加工过程, 2022, 20(2):119-124. DU YJ, JIA XT, TANG XM, DU ZX, CUI JD, JIA SR. Enzyme immobilization strategy based on metal-organic frameworks and its application[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(2):119-124.
    [27] LIANG S, WU XL, XIONG J, ZONG MH, LOU WY. Metal-organic frameworks as novel matrices for efficient enzyme immobilization:an update review[J]. Coordination Chemistry Reviews, 2020, 406:213149.
    [28] ZARE A, BORDBAR AK, JAFARIAN F, TANGESTANINEJAD S. Candida rugosa lipase immobilization on various chemically modified Chromium terephthalate MIL-101[J]. Journal of Molecular Liquids, 2018, 254:137-144.
    [29] LYKOURINOU V, CHEN Y, WANG XS, MENG L, HOANG T, MING LJ, MUSSELMAN RL, MA S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF:a new platform for enzymatic catalysis[J]. Journal of the American Chemical Society, 2011, 133(27):10382-10385.
    [30] CHENG KP, SVEC F, LV YQ, TAN TW. Hierarchical micro- and mesoporous zn-based metal-organic frameworks templated by hydrogels:their use for enzyme immobilization and catalysis of knoevenagel reaction[J]. Small, 2019, 15(49):1902927.
    [31] ZHAO M, LI Y, MA X, XIA M, ZHANG Y. Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol[J]. Talanta, 2019, 200:293-299.
    [32] DUTTA S, KUMARI N, DUBBU S, JANG SW, KUMAR A, OHTSU H, KIM J, CHO SH, Kawano M, LEE IS. Highly mesoporous metal-organic frameworks as synergistic multimodal catalytic platforms for divergent cascade reactions[J]. Angewandte Chemie- international Edition, 2020, 59(9):3416-3422.
    [33] BARON AM, RODRIGUES RD, SANTE LGG, KISTER JMD, DO NASCIMENTO VMG, BAIL A. Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis[J]. Biocatalysis and Biotransformation, 2022, 5:2068371.
    [34] ZHANG X, TU R, PENG J, HOU C, WANG Z. Integration of mimic multienzyme systems in metal-metalloporphyrin gel composites for colorimetric sensing[J]. Chemical Engineering Journal 2021, 404:126553.
    [35] LI Q, ZHAO W, GUO H, YANG J, ZHANG J, LIU M, XU T, CHEN Y, Zhang L. Metal-organic framework traps with record-high bilirubin removal capacity for hemoperfusion therapy[J]. Acs Applied Materials & Interfaces, 2020, 12(23):25546-25556.
    [36] WANG F, YANG J, LI Y, ZHUANG Q, GU J. Efficient enzyme-activated therapy based on the different locations of protein and prodrug in nanoMOFs[J]. Journal of Materials Chemistry B, 2020, 8(28):6139-6147.
    [37] PEI X, WU Y, WANG J, CHEN Z, LIU W, SU W, LIU F. Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal-organic framework for efficient biocatalysis[J]. Nanoscale, 2020, 12(2):967-972.
    [38] PENG H, DONG WG, CHEN QW, SONG HY, SUN HX, CHANG YH, LUO H. Encapsulation of nitrilase in zeolitic imidazolate framework-90 to improve its stability and reusability[J]. Applied Biochemistry and Biotechnology, 2022, 194:3527-3540
    [39] MOLINA MA, DIEZ-JAEN J, SANCHEZ-SANCHEZ M, BLANCO RM. One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water[J]. Catalysis Today, 2022, 390:265-271.
    [40] LI Y, WEN LY, TAN TW, LV YQ. Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7:394.
    [41] LIU JT, LIU TR, DU P, ZHANG L, LEI JP. Metal-organic framework (MOF) hybrid as a tandem catalyst for enhanced therapy against hypoxic tumor cells[J]. Angewandte Chemie-international Edition, 2019, 58(23):7808-7812.
    [42] MAO D, LI W, ZHANG F, YANG S, ISAK AN, SONG Y, GUO Y, CAO S, ZHANG R, FENG C, ZHU X, LI G. Nanocomposite of peroxidase-like cucurbit 6 uril with enzyme-encapsulated ZIF-8 and application for colorimetric biosensing[J]. Acs Applied Materials & Interfaces, 2021, 13(33):39719-39729.
    [43] ZHANG XS, ZHENG SH, TAO J, WANG XJ. In situ encapsulation of cellulase in a novel mesoporous metal-organic framework[J]. Catalysis Letters, 2022, 152(3):699-706.
    [44] ZHANG X, ZHANG F, LU Z, XU Q, HOU C, WANG Z. Coupling two sequential biocatalysts with close proximity into metal-organic frameworks for enhanced cascade catalysis[J]. Acs Applied Materials & Interfaces, 2020, 12(23):25565-25571.
    [45] LIAN X, FANG Y, JOSEPH E, WANG Q, LI J, BANERJEE S, LOLLAR C, WANG X, ZHOU HC. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11):3386-3401.
    [46] DOONAN C, RICCÒ R, LIANG K, BRADSHAW D, FALCARO P. Metal-organic frameworks at the biointerface:synthetic strategies and applications[J]. Accounts of Chemical Research, 2017, 50(6):1423-1432.
    [47] LI SF, CHEN Y, WANG YS, MO HL, ZANG SQ. Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions[J]. Science China-chemistry, 2022, 65(6):1122-1128.
    [48] CHOI S, OH M. Well-arranged and confined incorporation of pdco nanoparticles within a hollow and porous metal-organic framework for superior catalytic activity[J]. Angewandte Chemie-international Edition, 2019, 58(3):866-871.
    [49] MEHTA J, BHARDWAJ N, BHARDWAJ SK, KIM KH, DEEP A. Recent advances in enzyme immobilization techniques:metal-organic frameworks as novel substrates[J]. Coordination Chemistry Reviews, 2016, 322:30-40.
    [50] CHEN Y, LYKOURINOU V, VETROMILE C, HOANG T, MING LJ, LARSEN RW, MA S. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J]. Journal of the American Chemical Society, 2012, 134(32):13188-13191.
    [51] CHEN X, ZHANG Q. Recent advances in mesoporous metal-organic frameworks[J]. Particuology, 2019, 45:20-34.
    [52] XU W, THAPA KB, JU Q, FANG Z, HUANG W. Heterogeneous catalysts based on mesoporous metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018, 373:199-232.
    [53] KONG XJ, LI JR. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8):1115-1139.
    [54] HANEFELD U, CAO L, MAGNER E. Enzyme immobilisation:fundamentals and application[J]. Chemical Society Reviews, 2013, 42(15):6211-6212.
    [55] GAO R, ZHONG N, HUANG S, LI S, CHEN G, OUYANG G. Multienzyme biocatalytic cascade systems in porous organic frameworks for biosensing[J]. Chemistry-a European Journal, 2022, 28:e202200074.
    [56] OZYILMAZ E, CAGLAR O, SARGIN I, ARSLAN G. Synergistic role of carbon quantum dots in the activity and stability of Candida rugosa lipase encapsulated within metal-organic frameworks (ZIF-8)[J]. Materials Today Communications, 2022, 30:103066.
    [57] LI X, DONG H, FAN QL, CHEN K, SUN DK, HU T, NI ZH. One-pot, rapid microwave-assisted synthesis of bimetallic metal-organic framework for efficient enzyme-free glucose detection[J]. Microchemical Journal, 2022, 179:107468.
    [58] CHEN GS, KOU XX, HUANG SM, TONG LJ, SHEN YJ, ZHU WS, ZHU F, OUYANG GF. Modulating the biofunctionality of metal-organic framework- encapsulated enzymes through controllable embedding patterns[J]. Angewandte Chemie-international Edition, 2020, 59(7):2867-2874.
    [59] LIANG JY, GAO S, LIU J, ZULKIFLI MYB, XU JT, SCOTT J, CHEN VC, SHI JF, RAWAL A, LIANG K. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis[J]. Angewandte Chemie-international Edition, 2021, 60(10):5421-5428.
    [60] LIANG K, RICCO R, DOHERTY CM, STYLES MJ, BELL S, KIRBY N, MUDIE S, HAYLOCK D, HILL AJ, DOONAN CJ, FALCARO P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications, 2015, 6:7240.
    [61] HE S, WU L, LI X, SUN H, XIONG T, LIU J, HUANG C, XU H, SUN H, CHEN W, GREF R, ZHANG J. Metal-organic frameworks for advanced drug delivery[J]. Acta Pharmaceutica Sinica B, 2021, 11(8):2362-2395.
    [62] HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable & Sustainable Energy Reviews, 2018, 91:793-801.
    [63] YANG Y, LI G, WU D, LIU J, LI X, LUO P, HU N, WANG H, WU Y. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs[J]. Trends in Food Science & Technology, 2020, 96:233-252.
    [64] ZHANG X, WU D, WU Y, LI G. Bioinspired nanozyme for portable immunoassay of allergenic proteins based on A smartphone[J]. Biosensors & Bioelectronics, 2021, 172:112776.
    [65] CHENG X, ZHOU J, CHEN J, XIE Z, ZHENG L. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection[J]. Nano Research, 2019, 12(12):3031-3036.
    [66] LI S,LIU X, CHAI H, HUANG Y. Recent advances in the construction and analytical applications of metal- organic frameworks-based nanozymes[J]. Trac-trends in Analytical Chemistry, 2018, 105:391-403.
    [67] YE N, HUANG S, YANG H, WU T, TONG L, CHEN G, OUYANG G. Hydrogen-bonded biohybrid framework-derived highly specific nanozymes for biomarker sensing[J]. Analytical Chemistry, 2021, 93(41):13981-13989.
    [68] MA H, LI M, YU T, ZHANG H, XIONG M, LI F. Magnetic ZIF-8-based mimic multi-enzyme system as a colorimetric biosensor for detection of aryloxyphenoxypropionate herbicides[J]. Acs Applied Materials & Interfaces, 2021, 13(37):44329-44338.
    [69] LI N, LIU J, LIU JJ, DONG LZ, XIN ZF, TENG YL, LAN YQ. Adenine components in biomimetic metal- organic frameworks for efficient CO2 photoconversion[J]. Angewandte Chemie-international Edition, 2019, 58(16):5226-5231.
    [70] HUANG SM, CHEN GS, YE NR, KOU XX, ZHANG R, SHEN J, OUYANG GF. Iron-mineralization- induced mesoporous metal-organic frameworks enable high-efficiency synergistic catalysis of natural/nanomimic enzymes[J]. Acs Applied Materials & Interfaces, 2020, 12(51):57343-57351.
    [71] XU W, JIAO L, YAN H, WU Y, CHEN L, GU W, DU D, LIN Y, ZHU C. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing[J]. Acs Applied Materials & Interfaces, 2019, 11(25):22096-22101.
    [72] LIANG X, CHEN YX, WEN K, HAN HB, LI QS. Urate oxidase loaded in PCN-222(Fe) with peroxidase-like activity for colorimetric detection of uric acid[J]. Journal of Materials Chemistry B, 2021, 9(34):6811-6817.
    [73] SHI MY, XU M, GU ZY. Copper-based two- dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing[J]. Analytica Chimica Acta, 2019, 1079:164-170.
    [74] DU YJ, JIA XT, ZHONG L, JIAO Y, ZHANG ZJ, WANG ZY, FENG YX, BILAL M, CUI JD, JIA SR. Metal-organic frameworks with different dimensionalities:an ideal host platform for enzyme@MOF composites[J]. Coordination Chemistry Reviews, 2022, 454:214327.
    [75] WANG Y, YAN JH, WEN NC, XIONG HJ, CAI SD, HE QY, HU YQ, PENG DM, LIU ZB, LIU YF. Metal-organic frameworks for stimuli-responsive drug delivery[J]. Biomaterials, 2020, 230:119619.
    [76] LAWSON HD, WALTON SP, CHAN C. Metal-organic frameworks for drug delivery:a design perspective[J]. Acs Applied Materials & Interfaces, 2021, 13(6):7004-7020.
    [77] LINNANE E, HADDAD S, MELLE F, MEI ZH, FAIREN-JIMENEZ D. The uptake of metal-organic frameworks:a journey into the cell[J]. Chemical Society Reviews, 2022:51, 6065-6086.
    [78] GIMENEZ-MARQUES M, HIDALGO T, SERRE C, HORCAJADA P. Nanostructured metal-organic frameworks and their bio-related applications[J]. Coordination Chemistry Reviews, 2016, 307:342-360.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈雅维,郑慧杰,曹倚婷,杨佳佳,周惠云. 多级孔金属-有机框架固定化酶的研究进展[J]. 生物工程学报, 2023, 39(3): 930-941

复制
分享
文章指标
  • 点击次数:552
  • 下载次数: 1135
  • HTML阅读次数: 1308
  • 引用次数: 0
历史
  • 收稿日期:2022-08-05
  • 录用日期:2022-11-01
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第5998212位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司