光发酵强化三角褐指藻生产岩藻黄素
作者:
基金项目:

广东基础与应用基础研究基金重点项目(2019B1515120002)


Enhancing fucoxanthin production in Phaeodactylum tricornutum by photo-fermentation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究旨在建立光发酵培养三角褐指藻高效生产岩藻黄素的技术体系。在5 L光发酵罐中,系统研究了兼养条件下初始光强、氮源种类和浓度以及光质对于三角褐指藻生物量浓度和岩藻黄素积累的效果。结果表明,在初始光强为100 μmol/(m2·s)红蓝(R:B=6:1)混合光、含氮量为0.02 mol/L的胰蛋白胨和尿素混合氮源(1:1, N mol/N mol)优化条件下,三角褐指藻生物量浓度、岩藻黄素含量和产率分别达到了最大值3.80 g/L、13.44 mg/g和4.70 mg/(L·d),比优化前分别提高了1.41、1.33和2.05倍。本研究开发了强化三角褐指藻光发酵生产岩藻黄素的关键技术,促进了海洋天然产物开发。

    Abstract:

    The aim of this study was to develop a technical system for high-efficient production of fucoxanthin by photo-fermentation of Phaeodactylum tricornutum. In a 5 L photo- fermentation tank, the effects of initial light intensity, nitrogen source and concentration as well as light quality on biomass concentration and fucoxanthin accumulation in P. tricornutum were investigated systematically under mixotrophic condition. The results showed that the biomass concentration, fucoxanthin content and productivity reached the highest level of 3.80 g/L, 13.44 mg/g and 4.70 mg/(L·d) under the optimal conditions of initial light intensity of 100 μmol/(m2·s), 0.02 mol TN/L of tryptone:urea (1:1, N mol/N mol) as mixed nitrogen source, and a mixed red/blue (R:B=6:1) light, 1.41, 1.33 and 2.05-fold higher than that before optimization, respectively. This study developed a key technology for enhancing the production of fucoxanthin by photo-fermentation of P. tricornutum, facilitating the development of marine natural products.

    参考文献
    [1] FALKOWSKI PG, BARBER RT, SMETACEK V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374):200-206.
    [2] FIELD CB, BEHRENFELD MJ, RANDERSON JT, FALKOWSKI P. Primary production of the biosphere:Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240.
    [3] SCALA S, BOWLER C. Molecular insights into the novel aspects of diatom biology[J]. Cellular and Molecular Life Sciences CMLS, 2001, 58(11):1666-1673.
    [4] YANG RQ, WEI D, XIE J. Diatoms as cell factories for high-value products:chrysolaminarin, eicosapentaenoic acid, and fucoxanthin[J]. Critical Reviews in Biotechnology, 2020, 40(7):993-1009.
    [5] WU HL, LI T, WANG GH, DAI SK, HE H, XIANG WZ. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(2):391-398.
    [6] XIANG SY, LIU FF, LIN JJ, CHEN HX, HUANG CH, CHEN LP, ZHOU YY, YE LY, ZHANG K, JIN JK, ZHEN JC, WANG C, HE S, WANG QW, CUI W, ZHANG JR. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer- induced cognitive impairments[J]. Journal of Agricultural and Food Chemistry, 2017, 65(20):4092-4102.
    [7] SETH K, KUMAR A, RASTOGI RP, MEENA M, VINAYAK V, HARISH. Bioprospecting of fucoxanthin from diatoms-challenges and perspectives[J]. Algal Research, 2021, 60:102475.
    [8] LOURENÇO-LOPES C, FRAGA-CORRAL M, JIMENEZ-LOPEZ C, CARPENA M, PEREIRA AG, GARCIA-OLIVEIRA P, PRIETO MA, SIMAL-GANDARA J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries[J]. Trends in Food Science & Technology, 2021, 117:163-181.
    [9] MOHAMADNIA S, TAVAKOLI O, FARAMARZI MA, SHAMSOLLAHI Z. Production of fucoxanthin by the microalga Tisochrysis lutea:a review of recent developments[J]. Aquaculture, 2020, 516:734637.
    [10] XIA S, WANG K, WAN LL, LI AF, HU Q, ZHANG CW. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita[J]. Marine Drugs, 2013, 11(7):2667-2681.
    [11] YANG RQ, WEI D, POHNERT G. Nitrogen utilization analysis reveals the synergetic effect of arginine and urea in promoting fucoxanthin biosynthesis in the mixotrophic marine diatom Phaeodactylum tricornutum[J]. Frontiers in Marine Science, 2022, 9:947726.
    [12] MCCLURE DD, LUIZ A, GERBER B, BARTON GW, KAVANAGH JM. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum[J]. Algal Research, 2018, 29:41-48.
    [13] KIM SM, KANG SW, KWON ON, CHUNG D, PAN CH. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana:characterization of extraction for commercial application[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(4):477-483.
    [14] BUTLER T, KAPOORE RV, VAIDYANATHAN S. Phaeodactylum tricornutum:a diatom cell factory[J]. Trends in Biotechnology, 2020, 38(6):606-622.
    [15] DELBRUT A, ALBINA P, LAPIERRE T, PRADELLES R, DUBREUCQ E. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process[J]. Molecules:Basel, Switzerland, 2018, 23(4):874.
    [16] GAO BY, CHEN AL, ZHANG WY, LI AF, ZHANG CW. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions[J]. Journal of Ocean University of China, 2017, 16(5):916-924.
    [17] FERNÁNDEZ SEVILLA JM, CERÓN GARCÍA MC, SÁNCHEZ MIRÓN A, BELARBI EH, GARCÍA CAMACHO F, MOLINA GRIMA E. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors:studies in fed-batch mode[J]. Biotechnology Progress, 2004, 20(3):728-736.
    [18] YANG RQ, WEI D. Improving fucoxanthin production in mixotrophic culture of marine diatom Phaeodactylum tricornutum by LED light shift and nitrogen supplementation[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:820.
    [19] 骆小英, 陈俊辉, 魏东. 蛋白核小球藻高效同化硝态氮联产微藻蛋白[J]. 生物工程学报, 2020, 36(6):1150-1161. LUO XY, CHEN JH, WEI D. High efficient assimilation of NO3--N with coproduction of microalgal proteins by Chlorella pyrenoidosa[J]. Chinese Journal of Biotechnology, 2020, 36(6):1150-1161(in Chinese).
    [20] 诸德斐, 杨润青, 宋培钦, 魏东. 光及补料条件对室内管道光反应器中三角褐指藻生长和岩藻黄素积累的影响[J]. 广东海洋大学学报, 2021, 41(2):18-26. ZHU DF, YANG RQ, SONG PQ, WEI D. Effect of light and fed-batch operation on growth of Phaeodactylum tricornutum and its fucoxanthin accumulation in indoor tubular photobioreactor[J]. Journal of Guangdong Ocean University, 2021, 41(2):18-26(in Chinese).
    [21] 王珊, 杨润青, 宋培钦, 魏东. 碳氮源优化提高兼养三角褐指藻生物量和岩藻黄素产量[J]. 食品与生物技术学报, 2021, 40(10):82-90. WANG S, YANG RQ, SONG PQ, WEI D. Improving production of biomass and fucoxanthin in mixotrophic Phaeodactylum tricornutum by optimization of carbon and nitrogen sources[J]. Journal of Food Science and Biotechnology, 2021, 40(10):82-90(in Chinese).
    [22] WANG QK, YU ZY, WEI D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater[J]. Bioresource Technology, 2020, 313:123499.
    [23] CONCEIÇÃO D, LOPES RG, DERNER RB, CELLA H, CARMO APBD, MONTES D'OCA MG, PETERSEN R, PASSOS MF, VARGAS JVC, GALLI-TERASAWA LV, KAVA V. The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2020, 32(2):1017-1025.
    [24] WANG H, ZHANG Y, CHEN L, CHENG WT, LIU TZ. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures[J]. Bioprocess and Biosystems Engineering, 2018, 41(7):1061-1071.
    [25] ZHENG YT, QUINN AH, SRIRAM G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum[J]. Microbial Cell Factories, 2013, 12:109.
    [26] CHRISMADHA T, BOROWITZKA MA. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor[J]. Journal of Applied Phycology, 1994, 6(1):67-74.
    [27] 张会贞. 小球藻-酵母混合培养处理糖蜜酵母废水研究[D]. 广州:华南理工大学硕士学位论文, 2017. ZHANG HZ. Mixed culture of Chlorella and yeast for the treatment of yeast wastewater from molasses[D]. Guangzhou:Master's Thesis of South China University of Technology, 2017(in Chinese).
    [28] 郑雅莉. 嗜硫原始红藻混养处理高氨氮工业废水联产藻胆蛋白[D]. 广州:华南理工大学硕士学位论文, 2020. ZHENG YL. Treatment of ammonium-rich industrial wastewater by the mixotrophic culture of Galdieria sulphuraria with phycobiliprotein co-production[D]. Guangzhou:Master's Thesis of South China University of Technology, 2020(in Chinese).
    [29] 张文源, 高保燕, 李爱芬, 张成武. 不同培养条件对三角褐指藻生长及其生物活性成分积累的影响[J]. 海洋科学, 2016, 40(5):57-65. ZHANG WY, GAO BY, LI AF, ZHANG CW. Effects of different culture conditions on growth and accumulation of bioactive compounds by Phaeodactylum tricornutum[J]. Marine Sciences, 2016, 40(5):57-65(in Chinese).
    [30] FAN L, BRETT MT, LI B, SONG MM. The bioavailability of different dissolved organic nitrogen compounds for the freshwater algae Raphidocelis subcapitata[J]. Science of the Total Environment, 2018, 618:479-486.
    [31] WU ZS, QIU S, ABBEW AW, CHEN ZP, LIU YL, ZUO JY, GE SJ. Evaluation of nitrogen source, concentration and feeding mode for co-production of fucoxanthin and fatty acids in Phaeodactylum tricornutum[J]. Algal Research, 2022, 63:102655.
    [32] SMITH SR, DUPONT CL, MCCARTHY JK, BRODDRICK JT, OBORNÍK M, HORÁK A, FÜSSY Z, CIHLÁŘ J, KLEESSEN S, ZHENG H, MCCROW JP, HIXSON KK, ARAÚJO WL, NUNES-NESI A, FERNIE A, NIKOLOSKI Z, PALSSON BO, ALLEN AE. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom[J]. Nature Communications, 2019, 10:4552.
    [33] 隋吉槺, 汪辉, 刘天中. 硅藻岩藻黄素特性与其生物合成的研究进展[J]. 海洋科学, 2019, 43(12):130-138. SUI JK, WANG H, LIU TZ. Research progress of the characteristics and biosynthesis of diatom fucoxanthin[J]. Marine Sciences, 2019, 43(12):130-138(in Chinese).
    [34] SIRISUK P, RA CH, JEONG GT, KIM SK. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination[J]. Bioresource Technology, 2018, 253:175-181.
    [35] 徐润洁, 龚一富, 陈文婷, 李申睿, 陈若莹, 郑小恽, 陈璇木子, 王何瑜. 不同发光二极管单色光质对三角褐指藻中岩藻黄素含量及相关基因表达的影响[J]. 光学学报, 2019, 39(9):299-307. XU RJ, GONG YF, CHEN WT, LI SR, CHEN RY, ZHENG XY, CHEN X, WANG HY. Effects of LED monochromatic light quality of different colors on fucoxanthin content and expression levels of related genes in Phaeodactylum tricornutum[J]. Acta Optica Sinica, 2019, 39(9):299-307(in Chinese).
    [36] 张延青, 秦菲, 费凡, 李笑天, 黄滨, 赵奎峰, 刘宝良. LED光源在海水养殖水体中传播特征解析[J]. 渔业科学进展, 2020, 41(1):153-161. ZHANG YQ, QIN F, FEI F, LI XT, HUANG B, ZHAO KF, LIU BL. Analysis of propagation characteristics of LED light source in aquaculture water[J]. Progress in Fishery Sciences, 2020, 41(1):153-161(in Chinese).
    [37] WANG ZP, WANG PK, MA Y, LIN JX, WANG CL, ZHAO YX, ZHANG XY, HUANG BC, ZHAO SG, GAO L, JIANG J, WANG HY, CHEN W. Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum[J]. Bioresource Technology, 2022, 344:126117.
    [38] PATEL A, MATSAKAS L, HRŮZOVÁ K, ROVA U, CHRISTAKOPOULOS P. Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass[J]. Marine Drugs, 2019, 17(2):119.
    [39] CERÓN-GARCÍA MC, FERNÁNDEZ-SEVILLA JM, SÁNCHEZ-MIRÓN A, GARCÍA-CAMACHO F, CONTRERAS-GÓMEZ A, MOLINA- GRIMA E. Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes[J]. Bioresource Technology, 2013, 147:569-576.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

诸德斐,杨润青,魏东. 光发酵强化三角褐指藻生产岩藻黄素[J]. 生物工程学报, 2023, 39(3): 1070-1082

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-13
  • 录用日期:2022-09-14
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第6020279位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司