Abstract:The aim of this study was to develop a technical system for high-efficient production of fucoxanthin by photo-fermentation of Phaeodactylum tricornutum. In a 5 L photo- fermentation tank, the effects of initial light intensity, nitrogen source and concentration as well as light quality on biomass concentration and fucoxanthin accumulation in P. tricornutum were investigated systematically under mixotrophic condition. The results showed that the biomass concentration, fucoxanthin content and productivity reached the highest level of 3.80 g/L, 13.44 mg/g and 4.70 mg/(L·d) under the optimal conditions of initial light intensity of 100 μmol/(m2·s), 0.02 mol TN/L of tryptone:urea (1:1, N mol/N mol) as mixed nitrogen source, and a mixed red/blue (R:B=6:1) light, 1.41, 1.33 and 2.05-fold higher than that before optimization, respectively. This study developed a key technology for enhancing the production of fucoxanthin by photo-fermentation of P. tricornutum, facilitating the development of marine natural products.