基于金属有机沸石咪唑骨架的固定化细胞的制备及其在丙谷二肽制备中的应用
作者:
基金项目:

山东省自然科学基金(ZR2019BB062); 济宁医学院贺林院士新医学临床转化工作站科研基金(JYHL2021MS23);2022 年大学生创新创业计划(202210443001)


Immobilizing engineered Escherichia coli cells into zeolitic imidazolate framework 8 for efficient biosynthesis of Ala-Gln
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    来源于鞘氨醇杆菌(Sphingobacterium siyangensis)中的α-氨基酸酯酰基转移酶(α-amino acid ester acyltransferase, SAET),是目前发现的丙谷二肽催化合成能力最高的酶之一,能够以非保护的l-丙氨酸甲酯盐酸盐、l-谷氨酰胺合成l-丙氨酰-l-谷氨酰胺[即丙谷二肽(l-alanyl-l-glutamine, Ala-Gln)]。为了解决其在催化过程中的稳定问题,本研究在水相体系中采用"一步法"快速制备固定化细胞(SAET@ZIF-8),在构筑金属有机沸石咪唑骨架结构(ZIF-8)的同时,将表达有SAET的大肠杆菌(Escherichia coli)包裹在其内部空间中。在此基础上,对其结构、催化活性和重复使用性及储存稳定性等催化性能进行探究。结果表明,通过该方法制备的SAET@ZIF-8纳米颗粒与文献报道的ZIF-8材料的形貌基本相同,细胞的引入没有明显改变ZIF-8的形貌。重复使用7次后,SAET@ZIF-8仍能保持67%左右的初始酶活;室温下放置4 d时,固定化酶还保留有50%左右的初始酶活,表明SAET@ZIF-8具有较好的重复使用及储存稳定性。将SAET@ZIF-8用于丙谷二肽的催化实验中,当反应30 min后丙谷二肽的浓度达到62.83 mmol/L (13.65 g/L),时空产率达到0.455 g/(L·min),相对于谷氨酰胺的转化率为62.83%。以上结果表明,基于金属有机沸石咪唑骨架的固定化细胞是一种高效制备丙谷二肽的方法策略。

    Abstract:

    The α-amino acid ester acyltransferase (SAET) from Sphingobacterium siyangensis is one of the enzymes with the highest catalytic ability for the biosynthesis of l-alanyl-l-glutamine (Ala-Gln) with unprotected l-alanine methylester and l-glutamine. To improve the catalytic performance of SAET, a one-step method was used to rapidly prepare the immobilized cells (SAET@ZIF-8) in the aqueous system. The engineered Escherichia coli (E. coli) expressing SAET was encapsulated into the imidazole framework structure of metal organic zeolite (ZIF-8). Subsequently, the obtained SAET@ZIF-8 was characterized, and the catalytic activity, reusability and storage stability were also investigated. Results showed that the morphology of the prepared SAET@ZIF-8 nanoparticles was basically the same as that of the standard ZIF-8 materials reported in literature, and the introduction of cells did not significantly change the morphology of ZIF-8. After repeated use for 7 times, SAET@ZIF-8 could still retain 67% of the initial catalytic activity. Maintained at room temperature for 4 days, 50% of the original catalytic activity of SAET@ZIF-8 could be retained, indicating that SAET@ZIF-8 has good stability for reuse and storage. When used in the biosynthesis of Ala-Gln, the final concentration of Ala-Gln reached 62.83 mmol/L (13.65 g/L) after 30 min, the yield reached 0.455 g/(L·min), and the conversion rate relative to glutamine was 62.83%. All these results suggested that the preparation of SAET@ZIF-8 is an efficient strategy for the biosynthesis of Ala-Gln.

    参考文献
    [1] ROBERTSON LM, FLETCHER NM, DIAMOND MP, SAED GM. Evitar (l-alanyl-l-glutamine) regulates key signaling molecules in the pathogenesis of postoperative tissue fibrosis[J]. Reproductive Sciences, 2019, 26(6):724-733.
    [2] JIN MY, WANG YZ, WANG YX, LI YP, WANG GL, LIU XZ, XUE YH, LIU ZG, LI C. Protective effects oncorneal endothelium during intracameral irrigation using N-(2)-l-alanyl-l-glutamine[J]. Frontiers in Pharmacology, 2020, 11:369.
    [3] McCORMACK WP, HOFFMAN JR, PRUNA GJ, JAJTNER AR, TOWNSEND JR, STOUT JR, FRAGALA MS, FUKUDA DH. Effects of l-alanyl-l-glutamine ingestion on one-hour run performance[J]. Journal of the American College of Nutrition, 2015, 34(6):488-496.
    [4] TOM DIECK H, SCHÖN C, WAGNER T, PANKOKE HC, FLUEGEL M, SPECKMANN B. A synbiotic formulation comprising Bacillus subtilis DSM 32315 and l-alanyl-l-glutamine improves intestinal butyrate levels and lipid metabolism in healthy humans[J]. Nutrients, 2021, 14(1):143.
    [5] HERZOG R, BARTOSOVA M, TARANTINO S, WAGNER A, UNTERWURZACHER M, SACNUN JM, LICHTENAUER AM, KUSTER L, SCHAEFER B, ALPER SL, AUFRICHT C, SCHMITT CP, KRATOCHWILL K. Peritoneal dialysis fluid supplementation with alanyl-glutamine attenuates conventional dialysis fluid-mediated endothelial cell injury by restoring perturbed cytoprotective responses[J]. Biomolecules, 2020, 10(12):1678.
    [6] WANG MF, QI W, YU QX, SU RX, HE ZM. Kinetically controlled enzymatic synthesis of dipeptide precursor of l-alanyl-l-glutamine[J]. Biotechnology and Applied Biochemistry, 2011, 58(6):449-455.
    [7] YOKOZEKI K, HARA S. A novel and efficient enzymatic method for the production of peptides from unprotected starting materials[J]. Journal of Biotechnology, 2005, 115(2):211-220.
    [8] CALCOTT MJ, OWEN JG, ACKERLEY DF. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution[J]. Nature Communications, 2020, 11:4554.
    [9] PATTESON JB, DUNN ZD, LI B. In vitro biosynthesis of the nonproteinogenic amino acid methoxyvinylglycine[J]. Angewandte Chemie, 2018, 130(23):6896-6901.
    [10] SHI J, XU X, LIU PY, HU YL, ZHANG B, JIAO RH, BASHIRI G, TAN RX, GE HM. Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway[J]. Chemical Science, 2021, 12(8):2925-2930.
    [11] KANO S, SUZUKI S, HARA R, KINO K. Synthesis of d-amino acid-containing dipeptides using the adenylation domains of nonribosomal peptide synthetase[J]. Applied and Environmental Microbiology, 2019, 85(13):e00120-e00119.
    [12] WANG T, ZHANG YF, NING LX, WANG YF, LIU XH, LI R, CHEN XE. l-amino acid ligase:a promising alternative for the biosynthesis of l-dipeptides[J]. Enzyme and Microbial Technology, 2020, 136:109537.
    [13] LIU XH, NING LX, ZHANG YF, WANG YF, LU ZH, WANG T. Rational engineering of BaLal_16 from a novel Bacillus amyloliquefaciens strain to improve catalytic performance[J]. Enzyme and Microbial Technology, 2021, 146:109781.
    [14] ZHU JM, YANG W, WANG BH, LIU Q, ZHONG XT, GAO QX, LIU JZ, HUANG JZ, LIN BX, TAO Y. Metabolic engineering of Escherichia coli for efficient production of l-alanyl-l-glutamine[J]. Microbial Cell Factories, 2020, 19(1):1-10.
    [15] PEI XZ, LI YM, DU C, YUAN TG, FAN C, HONG H, YUAN WJ. Production of l-alanyl-l-glutamine by immobilized Escherichia coli expressing amino acid ester acyltransferase[J]. Applied Microbiology and Biotechnology, 2020, 104(16):6967-6976.
    [16] LI YM, YUAN WJ, GAO JQ, FAN C, WU WZ, BAI FW. Production of L-alanyl-l-glutamine by recycling E. coli expressing α-amino acid ester acyltransferase[J]. Bioresource Technology, 2017, 245:1603-1609.
    [17] YOKOZEKI K, ABE I. A novel route for aspartame production by combining enzymatic and chemical reactions for industrial use[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(2):464-466.
    [18] WATZEL J, HACKER C, DUCHARDT-FERNER E, BODE HB, WÖHNERT J. A new docking domain type in the peptide-antimicrobial-Xenorhabdus peptide producing nonribosomal peptide synthetase from Xenorhabdus bovienii[J]. ACS Chemical Biology, 2020, 15(4):982-989.
    [19] BOZHÜYÜK KAJ, FLEISCHHACKER F, LINCK A, WESCHE F, TIETZE A, NIESERT CP, BODE HB. De novo design and engineering of non-ribosomal peptide synthetases[J]. Nature Chemistry, 2018, 10(3):275-281.
    [20] BROWN AS, CALCOTT MJ, OWEN JG, ACKERLEY DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines[J]. Natural Product Reports, 2018, 35(11):1210-1228.
    [21] LIU XY, HUA KM, LIU DX, WU ZL, WANG Y, ZHANG HR, DENG ZX, PFEIFER BA, JIANG M. Heterologous biosynthesis of type Ⅱ polyketide products using E. coli[J]. ACS Chemical Biology, 2020, 15(5):1177-1183.
    [22] POGOREVC D, TANG Y, HOFFMANN M, ZIPF G, BERNAUER HS, POPOFF A, STEINMETZ H, WENZEL SC. Biosynthesis and heterologous production of argyrins[J]. ACS Synthetic Biology, 2019, 8(5):1121-1133.
    [23] HIRAO Y, MIHARA Y, KIRA I, ABE I, YOKOZEKI K. Enzymatic production of l-alanyl-l-glutamine by recombinant E. coli expressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(3):618-623.
    [24] NADAR SS, RATHOD VK. Facile synthesis of glucoamylase embedded metal-organic frameworks (glucoamylase-MOF) with enhanced stability[J]. International Journal of Biological Macromolecules, 2017, 95:511-519.
    [25] CHEN XG, DI HJ, LI SX, LIU XD, TING C, ZHAO FY, CHEN HG, LU ZH, LIU XH, WANG T. Cell@MOF nanocomposites with improved catalytic performance for the enzymatic biosynthesis of Ala-Gln[J]. Catalysis Letters, 2022, 152(11):3213-3219.
    [26] LYU FJ, ZHANG YF, ZARE RN, GE J, LIU Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J]. Nano Letters, 2014, 14(10):5761-5765.
    [27] JONES BN, GILLIGAN JP. o-phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids[J]. Journal of Chromatography A, 1983, 266:471-482.
    [28] JIAN MP, LIU B, LIU RP, QU JH, WANG HT, ZHANG XW. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature[J]. RSC Advances, 2015, 5(60):48433-48441.
    [29] LIANG H, JIANG SH, YUAN QP, LI GF, WANG F, ZHANG ZJ, LIU JW. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers:improved stability and an enzyme cascade for glucose detection[J]. Nanoscale, 2016, 8(11):6071-6078.
    [30] WANG XL, SHI JF, LI Z, ZHANG SH, WU H, JIANG ZY, YANG C, TIAN CY. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14522-14532.
    [31] Tu M, Wiktor C, Rösler C, Fischer RA. Rapid room temperature syntheses of zeolitic-imidazolate framework (ZIF) nanocrystals[J]. Chem Commun (Camb), 2014, 50(87):13258-13260.
    [32] KIDA K, OKITA M, FUJITA K, TANAKA S, MIYAKE Y. Formation of high crystalline ZIF-8 in an aqueous solution[J]. CrystEngComm, 2013, 15(9):1794.
    [33] PAN YC, LIU YY, ZENG GF, ZHAO L, LAI ZP. Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications, 2011, 47(7):2071.
    [34] 刘鹏飞, 陆启蒙, 胡雪芹, 侯学文, 张洪斌. α-氨基酸酯酰基转移酶表达纯化、酶学性质及其催化应用[J]. 生物工程学报, 2018, 34(7):1169-1177. LIU PF, LU QM, HU XQ, HOU XW, ZHANG HB. Expression, purification, characterization and application of α-amino acid ester acyltransferase from recombinant Escherichia coli[J]. Chinese Journal of Biotechnology, 2018, 34(7):1169-1177(in Chinese).
    [35] LI YM, GAO JQ, PEI XZ, DU C, FAN C, YUAN WJ, BAI FW. Production of l-alanyl-l-glutamine by immobilized Pichia pastoris GS115 expressing α-amino acid ester acyltransferase[J]. Microbial Cell Factories, 2019, 18(1):1-12.
    [36] ABE I, HARA S, YOKOZEKI K. Gene cloning and characterization of α-amino acid ester acyl transferase in Empedobacter brevis ATCC 14234 and Sphingobacterium siyangensis AJ2458[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(11):2087-2092.
    [37] TABATA K, HASHIMOTO SI. Fermentative production of l-alanyl-l-glutamine by a metabolically engineered Escherichia coli strain expressing l-amino acid α-ligase[J]. Applied and Environmental Microbiology, 2007, 73(20):6378-6385.
    [38] 洪翔, 朱新雅, 贾子樊, 黄晗, 谭旭, 范晓光. 利用重组枯草芽孢杆菌l-氨基酸连接酶合成丙谷二肽[J]. 发酵科技通讯, 2017, 46(2):83-87. HONG X, ZHU XY, JIA ZF, HUANG H, TAN X, FAN XG. Enzymatic synthesis of l-alanyl-l-glutamine by l-amino acid ligase from Bacillus subtilis[J]. Bulletin of Fermentation Science and Technology, 2017, 46(2):83-87(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张营康,程婷,赵飞扬,易炎琴,李青清,卢振华,吴绵斌,王涛,刘晓环. 基于金属有机沸石咪唑骨架的固定化细胞的制备及其在丙谷二肽制备中的应用[J]. 生物工程学报, 2023, 39(3): 1131-1141

复制
分享
文章指标
  • 点击次数:408
  • 下载次数: 1302
  • HTML阅读次数: 830
  • 引用次数: 0
历史
  • 收稿日期:2022-10-23
  • 录用日期:2022-12-07
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第6036150位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司