若干裂解基因盒子的表征及应用
作者:
基金项目:

国家重点研发计划(2020YFA0906900, 2018YFA0902700);中国科学院科研仪器设备研制项目(YJKYYQ20200033)


Characterization and application of several lysis cassettes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    裂解作为合成生物学中的常见功能模块单元,在基因线路设计方面具有广泛的运用。裂解主要通过诱导表达噬菌体的裂解基因盒子实现,不过,尚未有关于裂解基因的详细表征。本研究首先利用阿拉伯糖和鼠李糖诱导系统在大肠杆菌(Escherichia coli) Top10表达了5种裂解基因盒子(S105, A52G, C51S S76C,LKD, LUZ),通过OD600值的测量,表征了在不同生长阶段、诱导剂浓度、质粒拷贝数等条件下,含有不同裂解基因盒子的大肠杆菌菌株Top10的裂解行为。结果表明,虽然5种裂解基因盒子在大肠杆菌内都可以有效引起宿主的裂解,但是裂解行为在不同条件下有较大差异。进一步地,由于诱导系统在不同宿主之间背景表达水平的差异,导致在铜绿假单胞菌(Pseudomonas aeruginosa) PAO1中难以构建可诱导的裂解系统。经过筛选,通过基因组插入的方式,利用鼠李糖诱导系统对裂解基因盒子在铜绿假单胞菌中引起的裂解行为进行表征。结果显示,LUZLKD具有较强的使铜绿假单胞菌裂解的能力,而S105A52GC51S S76C对铜绿假单胞菌的裂解能力较差。最后,利用LUZ和光遗传学工具BphS,通过调整核糖体结合位点(ribosome binding site, RBS)的强度,构建了可在指定表面黏附并裂解的工程菌Q16,该菌株具有应用于表面修饰的巨大潜力。

    Abstract:

    Lysis is a common functional module in synthetic biology and is widely used in genetic circuit design. Lysis could be achieved by inducing expression of lysis cassettes originated from phages. However, detailed characterization of lysis cassettes hasn't been reported yet. Here, we first adopted arabinose- and rhamnose-inducible systems to develop inducible expression of five lysis cassettes (S105, A52G, C51S S76C, LKD, LUZ) in Escherichia coli Top10. By measuring OD600, we characterized the lysis behavior of strains harboring different lysis cassettes. These strains were harvested at different growth stages, induced with different concentrations of chemical inducers, or contained plasmids with different copy numbers. We found that although all five lysis cassettes could induce bacterial lysis in Top10, lysis behaviors differed a lot at various conditions. We further found that due to the difference in background expression levels between strain Top10 and Pseudomonas aeruginosa PAO1, it was hard to construct inducible lysis systems in strain PAO1. The lysis cassette controlled by rhamnose-inducible system was finally inserted into the chromosome of strain PAO1 to construct lysis strains after careful screen. The results indicated that LUZ and LKD were more effective in strain PAO1 than S105, A52G and C51S S76C. At last, we constructed an engineered bacteria Q16 using an optogenetic module BphS and the lysis cassette LUZ. The engineered strain was capable of adhering to target surface and achieving light-induced lysis by tuning the strength of ribosome binding sites (RBSs), showing great potential in surface modification.

    参考文献
    [1] TANG TC, AN BL, HUANG YY, VASIKARAN S, WANG YY, JIANG XY, LU TK, ZHONG C. Materials design by synthetic biology[J]. Nature Reviews Materials, 2021, 6(4):332-350.
    [2] SMANSKI MJ, ZHOU H, CLAESEN J, SHEN B, FISCHBACH MA, VOIGT CA. Synthetic biology to access and expand nature' chemical diversity[J]. Nature Reviews Microbiology, 2016, 14(3):135-149.
    [3] LV XQ, WU YK, GONG MY, DENG JY, GU Y, LIU YF, LI JH, DU GC, LEDESMA-AMARO R, LIU L, CHEN J. Synthetic biology for future food:research progress and future directions[J]. Future Foods, 2021, 3:100025.
    [4] TAN X, LETENDRE JH, COLLINS JJ, WONG WW. Synthetic biology in the clinic:engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4):881-898.
    [5] HAMMER K, MIJAKOVIC I, JENSEN PR. Synthetic promoter libraries-tuning of gene expression[J]. Trends in Biotechnology, 2006, 24(2):53-55.
    [6] SALIS HM. The ribosome binding site calculator[A]//Methods in Enzymology[M]. Amsterdam:Elsevier, 2011:19-42.
    [7] CHEN YJ, LIU P, NIELSEN AAK, BROPHY JAN, CLANCY K, PETERSON T, VOIGT CA. Characterization of 582 natural and synthetic terminators and quantification of their design constraints[J]. Nature Methods, 2013, 10(7):659-664.
    [8] LOU CB, STANTON B, CHEN YJ, MUNSKY B, VOIGT CA. Ribozyme-based insulator parts buffer synthetic circuits from genetic context[J]. Nature Biotechnology, 2012, 30(11):1137-1142.
    [9] LINDNER F, DIEPOLD A. Optogenetics in bacteria-applications and opportunities[J]. FEMS Microbiology Reviews, 2022, 46(2):fuab055.
    [10] CONG L, RAN FA, COX D, LIN SL, BARRETTO R, HABIB N, HSU PD, WU XB, JIANG WY, MARRAFFINI LA, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.
    [11] SCHUSTER LA, REISCH CR. A plasmid toolbox for controlled gene expression across the Proteobacteria[J]. Nucleic Acids Research, 2021, 49(12):7189-7202.
    [12] ANDERSEN JB, STERNBERG C, POULSEN LK, BJORN SP, GIVSKOV M, MOLIN S. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria[J]. Applied and Environmental Microbiology, 1998, 64(6):2240-2246.
    [13] NGUYEN PQ, BOTYANSZKI Z, TAY PKR, JOSHI NS. Programmable biofilm-based materials from engineered curli nanofibres[J]. Nature Communications, 2014, 5:4945.
    [14] HUANG JF, LIU SY, ZHANG C, WANG XY, PU JH, BA F, XUE S, YE HF, ZHAO TX, LI K, WANG YY, ZHANG JC, WANG LH, FAN CH, LU TK, ZHONG C. Programmable and printable Bacillus subtilis biofilms as engineered living materials[J]. Nature Chemical Biology, 2019, 15(1):34-41.
    [15] GAO YQ, FENG XJ, XIAN M, WANG Q, ZHAO G. Inducible cell lysis systems in microbial production of bio-based chemicals[J]. Applied Microbiology and Biotechnology, 2013, 97(16):7121-7129.
    [16] HWANG IY, KOH E, WONG A, MARCH JC, BENTLEY WE, LEE YS, CHANG MW. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models[J]. Nature Communications, 2017, 8:15028.
    [17] DIN MO, DANINO T, PRINDLE A, SKALAK M, SELIMKHANOV J, ALLEN K, JULIO E, ATOLIA E, TSIMRING LS, BHATIA SN, HASTY J. Synchronized cycles of bacterial lysis for in vivo delivery[J]. Nature, 2016, 536(7614):81-85.
    [18] CHOWDHURY S, CASTRO S, COKER C, HINCHLIFFE TE, ARPAIA N, DANINO T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity[J]. Nature Medicine, 2019, 25(7):1057-1063.
    [19] BORRERO-de ACUÑA JM, HIDALGO-DUMONT C, PACHECO N, CABRERA A, POBLETE-CASTRO I. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production[J]. Scientific Reports, 2017, 7:4373.
    [20] CHU T, GUAN LY, SHANG PF, WANG QY, XIAO JF, LIU Q, ZHANG YX. A controllable bacterial lysis system to enhance biological safety of live attenuated Vibrio anguillarum vaccine[J]. Fish & Shellfish Immunology, 2015, 45(2):742-749.
    [21] PARK SY, LEE JY, CHANG WS, CHOY HE, KIM GJ. A coupling process for improving purity of bacterial minicells by holin/lysin[J]. Journal of Microbiological Methods, 2011, 86(1):108-110.
    [22] JUHAS M, AJIOKA JW. T7RNA polymerase-driven inducible cell lysis for DNA transfer from Escherichia coli to Bacillus subtilis[J]. Microbial Biotechnology, 2017, 10(6):1797-1808.
    [23] YOUNG R. Phage lysis:do we have the hole story yet?[J]. Current Opinion in Microbiology, 2013, 16(6):790-797.
    [24] RYU MH, GOMELSKY M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications[J]. ACS Synthetic Biology, 2014, 3(11):802-810.
    [25] CHOI KH, SCHWEIZER HP. Mini-Tn7 insertion in bacteria with single attTn7 sites:example Pseudomonas aeruginosa[J]. Nature Protocols, 2006, 1(1):153-161.
    [26] ZHANG RR, XIA AG, NI L, LI FX, JIN ZY, YANG S, JIN F. Strong shear flow persister bacteria resist mechanical washings on the surfaces of various polymer materials[J]. Advanced Biosystems, 2017, 1(12):e1700161.
    [27] HUANG YJ, XIA AG, YANG G, JIN F. Bioprinting living biofilms through optogenetic manipulation[J]. ACS Synthetic Biology, 2018, 7(5):1195-1200.
    [28] GRÜNDLING A, BLÄSI U, YOUNG R. Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin[J]. Journal of Bacteriology, 2000, 182(21):6082-6090.
    [29] GRÜNDLING A, MANSON MD, YOUNG R. Holins kill without warning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(16):9348-9352.
    [30] CEYSSENS PJ, LAVIGNE R, MATTHEUS W, CHIBEU A, HERTVELDT K, MAST J, ROBBEN J, VOLCKAERT G. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1:establishment of the phiKMV subgroup within the T7 supergroup[J]. Journal of Bacteriology, 2006, 188(19):6924-6931.
    [31] LAVIGNE R, LECOUTERE E, WAGEMANS J, CENENS W, AERTSEN A, SCHOOFS L, LANDUYT B, PAESHUYSE J, SCHEER M, SCHOBERT M, CEYSSENS PJ. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19[J]. mBio, 2013, 4(2):e00061-00013.
    [32] MEISNER J, GOLDBERG JB. The Escherichia coli rhaSR-PrhaBAD inducible promoter system allows tightly controlled gene expression over a wide range in Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2016, 82(22):6715-6727.
    [33] WHITE R, CHIBA S, PANG T, DEWEY JS, SAVVA CG, HOLZENBURG A, POGLIANO K, YOUNG R. Holin triggering in real time[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2):798-803.
    [34] CHOI KH, GAYNOR JB, WHITE KG, LOPEZ C, BOSIO CM, KARKHOFF-SCHWEIZER RR, SCHWEIZER HP. A Tn7-based broad-range bacterial cloning and expression system[J]. Nature Methods, 2005, 2(6):443-448.
    [35] KHAN JA, GUSS AM, KAO KC. Enhancing transcription in Escherichia coli and Pseudomonas putida using bacteriophage lambda anti-terminator protein Q[J]. Biotechnology Letters, 2022, 44(2):253-258.
    [36] SANTANGELO TJ, ARTSIMOVITCH I. Termination and antitermination:RNA polymerase runs a stop sign[J]. Nature Reviews Microbiology, 2011, 9(5):319-329.
    [37] BAUMSCHLAGER A, KHAMMASH M. Synthetic biological approaches for optogenetics and tools for transcriptional light-control in bacteria[J]. Advanced Biology, 2021, 5(5):e2000256.
    [38] JENAL U, REINDERS A, LORI C. Cyclic di-GMP:second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5):271-284.
    [39] SAUER K, STOODLEY P, GOERES DM, HALL-STOODLEY L, BURMØLLE M, STEWART PS, BJARNSHOLT T. The biofilm life cycle:expanding the conceptual model of biofilm formation[J]. Nature Reviews Microbiology, 2022, 20(10):608-620.
    [40] KULESEKARA H, LEE V, BRENCIC A, LIBERATI N, URBACH J, MIYATA S, LEE DG, NEELY AN, HYODO M, HAYAKAWA Y, AUSUBEL FM, LORY S. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8):2839-2844.
    [41] FLEMMING HC, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
    [42] WONG CFA, van VLIET L, BHUJBAL SV, GUO CZ, SLETMOEN M, STOKKE BT, HOLLFELDER F, LALE R. A titratable cell lysis-on-demand system for droplet- compartmentalized ultrahigh-throughput screening in functional metagenomics and directed evolution[J]. ACS Synthetic Biology, 2021, 10(8):1882-1894.
    [43] MA Y, ZHU WJ, ZHU GS, XU Y, LI SY, CHEN R, CHEN LD, WANG JF. Efficient robust yield method for preparing bacterial ghosts by Escherichia coli phage ID52 lysis protein E[J]. Bioengineering:Basel, Switzerland, 2022, 9(7):1-21.
    [44] WON G, HAJAM IA, LEE JH. Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by co-expression of λ phage holin-endolysin and ɸX174 gene E[J]. Scientific Reports, 2017(1), 1-12.
    [45] WANG GY, LU X, ZHU YS, ZHANG W, LIU JH, WU YK, YU LY, SUN DC, CHENG F. A light-controlled cell lysis system in bacteria[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6):429-432.
    [46] STRATHMANN M, WINGENDER J, FLEMMING HC. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa[J]. Journal of Microbiological Methods, 2002, 50(3):237-248.
    [47] LI X, ZHANG CC, XU XP, MIAO J, YAO J, LIU RM, ZHAO YZ, CHEN XJ, YANG Y. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells[J]. Nucleic Acids Research, 2020, 48(6):e33.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付生伟,金帆. 若干裂解基因盒子的表征及应用[J]. 生物工程学报, 2023, 39(3): 1142-1162

复制
分享
文章指标
  • 点击次数:270
  • 下载次数: 940
  • HTML阅读次数: 1181
  • 引用次数: 0
历史
  • 收稿日期:2022-09-22
  • 录用日期:2022-11-28
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第5991010位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司