聚苯乙烯纳米塑料-植物蛋白冠的形成与特征
作者:
基金项目:

中央高校基本科研业务费(2021ZY14);国家自然科学基金(32001197)


Formation and characteristics of polystyrene nanoplastic-plant protein corona
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究聚苯乙烯纳米塑料-植物蛋白冠的形成过程以及蛋白冠的形成对植物可能造成的影响,本研究选用3种平均粒径为200 nm不同表面修饰的聚苯乙烯纳米塑料微球和新几内亚凤仙(Impatiens hawkeri)为对象,将3种聚苯乙烯纳米塑料分别与新几内亚凤仙的叶蛋白提取物进行反应,反应时间分别为2、4、8、16、24、36 h。利用扫描电镜(scanning electron microscopy, SEM)观察其形貌变化,原子力显微镜(atomic force microscopy, AFM)进行表面粗糙度测定,使用纳米粒度和zeta电位分析仪测定水合粒径及zeta电位,液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry, LC-MS/MS)鉴定蛋白冠的蛋白成分。从生物学过程、细胞组分以及分子功能3个方面对蛋白进行分类,研究不同表面修饰的纳米塑料对蛋白的吸附选择,探究聚苯乙烯纳米塑料-植物蛋白冠的形成与特征,预测蛋白冠对植物造成的可能影响。结果表明:随着反应时间增加,纳米塑料的形貌变化越发明显,表现为尺寸和粗糙度的增加和稳定性的增强,由此证明了蛋白冠的形成;在相同蛋白浓度条件下,3种聚苯乙烯纳米塑料与叶蛋白形成蛋白冠的过程中,由软蛋白冠到硬蛋白冠的转化速度基本一致;在与叶蛋白进行反应时,3种纳米塑料对不同等电点和分子量蛋白的吸附选择存在差异,最终形成的蛋白冠的粒径和稳定性也存在差异,氨基修饰纳米塑料对蛋白质的吸附能力更强,形成的硬蛋白冠的稳定性强于羧基修饰纳米塑料和无修饰纳米塑料;由于蛋白冠的蛋白组分中很大一部分参与植物的光合作用,由此推测,蛋白冠的形成可能对新几内亚凤仙的光合作用产生影响。

    Abstract:

    To investigate the formation of polystyrene nanoplastic-plant protein corona and its potential impact on plants, three differently modified polystyrene nanoplastics with an average particle size of 200 nm were taken to interact with the leaf proteins of Impatiens hawkeri for 2 h, 4 h, 8 h, 16 h, 24 h, and 36 h, respectively. The morphological changes were observed by scanning electron microscopy (SEM), the surface roughness was determined by atomic force microscopy (AFM), the hydrated particle size and zeta potential were determined by nanoparticle size and zeta potential analyzer, and the protein composition of the protein corona was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proteins were classified in terms of biological processes, cellular components, and molecular functions to study the adsorption selection of nanoplastics to proteins, investigate the formation and characteristics of polystyrene nanoplastic-plant protein corona and predict the potential impact of protein corona on plants. The results showed that the morphological changes of the nanoplastics became clearer as the reaction time extends, as evidenced by the increase in size and roughness and the enhancement of stability, thus demonstrating the formation of protein corona. In addition, the transformation rate from soft to hard protein corona was basically the same for the three polystyrene nanoplastics in the formation of protein corona with leaf proteins under the same protein concentration conditions. Moreover, in the reaction with leaf proteins, the selective adsorption of the three nanoplastics to proteins with different isoelectric points and molecular weights differed, and the particle size and stability of the final formed protein corona also differed. Since a large portion of the protein fraction in protein corona is involved in photosynthesis, it is hypothesized that the formation of the protein corona may affect photosynthesis in I. hawkeri.

    参考文献
    [1] GEYER R, JAMBECK JR, LAW KL. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
    [2] da COSTA JP, SANTOS PSM, DUARTE AC, ROCHA-SANTOS T. (Nano) plastics in the environment-sources, fates and effects[J]. The Science of the Total Environment, 2016, 566/567:15-26.
    [3] LEE Y K, CHOI EJ, WEBSTER TJ, KIM SH, KHANG D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity[J]. International Journal of Nanomedicine, 2015, 10:97-112.
    [4] CHONG Y, GE CC, YANG ZX, GARATE JA, GU ZL, WEBER JK, LIU LL, ZHOU RH. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating[J]. Acs Nano, 2015, 9(6):5713-24.
    [5] JULING S, NIEDZWIECKA A, BÖHMERT L, LICHTENSTEIN D, SELVE S, BRAEUNING A, THÜNEMANN AF, KRAUSE E, LAMPEN A. Protein corona analysis of silver nanoparticles links to their cellular effects[J]. Journal of Proteome Research, 2017, 16(11):4020-4034.
    [6] GARCÍA-ÁLVAREZ R, HADJIDEMETRIOU M, SÁNCHEZ-IGLESIAS A, LIZ-MARZÁN LM, KOSTARELOS K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape[J]. Nanoscale, 2018, 10(3):1256-1264.
    [7] SCHWAB F, ROTHEN-RUTISHAUSER B, PETRI-FINK A. When plants and plastic interact[J]. Nature Nanotechnology, 2020, 15(9):729-730.
    [8] 李连祯, 周倩, 尹娜, 涂晨, 骆永明. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9):928-934. LI LZ, ZHOU Q, YIN N, TU C, LUO YM. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9):928-934(in Chinese).
    [9] 王雅蓁, 龚涛, 李圆, 高会乐. 卵巢癌患者血浆蛋白冠的形成及其对纳米粒靶向性的影响[J]. 药学学报, 2021, 56(2):604-609. WANG YZ, GONG T, LI Y, GAO HL. Preparation and targeting capability of corona forming in human ovarian plasma[J]. Acta Pharmaceutica Sinica, 2021, 56(2):604-609(in Chinese).
    [10] 汤玉云, 谷晓, 高金超, 章倩, 黄萌, 汪安恬, 余人和, 高小玲. APP/PS1小鼠中PEG-PLA纳米粒的表面蛋白冠组成及其脑内递送的实验研究[J]. 现代生物医学进展, 2021, 21(24):4601-4608. TANG YY, GU X, GAO JC, ZHANG Q, HUANG M, WANG AT, YU RH, GAO XL. The study of protein corona composition and brain delivery of PEG-PLA nanoparticles in APP/PS1 mice[J]. Progress in Modern Biomedicine, 2021, 21(24):4601-4608(in Chinese).
    [11] PRAKASH S, Deswal R Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea[J]. Plant Physiology and Biochemistry, 2020, 146:143-156.
    [12] LESNIAK A, FENAROLI F, MONOPOLI MP, ÅBERG C, DAWSON KA, SALVATI A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells[J]. ACS Nano, 2012, 6(7):5845-5857.
    [13] ARORA S, SHARMA P, KUMAR S, NAYAN R, KHANNA PK, ZAIDI MGH. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea[J]. Plant Growth Regulation, 2012, 66(3):303-310.
    [14] GEBAUER JS, MALISSEK M, SIMON S, KNAUER SK, MASKOS M, STAUBER RH, PEUKERT W, TREUEL L. Impact of the nanoparticle-protein corona on colloidal stability and protein structure[J]. Langmuir, 2012, 28(25):9673-9679.
    [15] DOMINGUEZ-MEDINA S, BLANKENBURG J, OLSON J, LANDES CF, LINK S. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7):833-842.
    [16] SHIU RF, VAZQUEZ CI, CHIANG CY, CHIU MH, CHEN CS, NI CW, GONG GC, QUIGG A, SANTSCHI PH, CHIN WC. Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton[J]. The Science of the Total Environment, 2020, 748:141469.
    [17] MA ZF, BAI J, JIANG XE. Monitoring of the enzymatic degradation of protein corona and evaluating the accompanying cytotoxicity of nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(32):17614-17622.
    [18] DELL'ORCO D, LUNDQVIST M, OSLAKOVIC C, CEDERVALL T, LINSE S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid[J]. PLoS One, 2010, 5(6):e10949.
    [19] WEI LF, ZHANG Q, HOU XW, QU GB, LIU JY, JIANG GB. Species-dependent eco-corona dictates the aggregation of black phosphorus nanosheets:the role of protein and calcium[J]. Environmental Science:Nano, 2021, 8(11):3098-3109.
    [20] LYNCH I, DAWSON KA. Protein-nanoparticle interactions[J]. Nano Today, 2008, 3(1/2):40-47.
    [21] MILANI S, BOMBELLI FB, PITEK AS, DAWSON KA, RÄDLER J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles:soft and hard corona[J]. ACS Nano, 2012, 6(3):2532-2541.
    [22] LAI WJ, WANG QS, LI LM, HU ZY. Interaction of gold and silver nanoparticles with human plasma:analysis of protein corona reveals specific binding patterns[J]. Colloids and Surfaces B:Biointerfaces, 2017, 152:317-325.
    [23] CUI GX, SU WT, TAN MQ. Formation and biological effects of protein corona for food-related nanoparticles[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(2):2002-2031.
    [24] LIU N. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells[J]. Chemosphere, 2020, 245:125624.
    [25] SAKULKHU U, MAHMOUDI M, MAURIZI L, COULLEREZ G, HOFMANN-AMTENBRINK M, VRIES M, MOTAZACKER M, REZAEE F, HOFMANN H. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona[J]. Biomaterials Science, 2015, 3(2):265-278.
    [26] CHETWYND AJ, ZHANG W, THORN JA, LYNCH I, RAMAUTAR R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach:a pilot study[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(21):e2000295.
    [27] CEDERVALL T, LYNCH I, FOY M, BERGGÅRD T, DONNELLY SC, CAGNEY G, LINSE S, DAWSON KA. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles[J]. Angewandte Chemie (International Ed in English), 2007, 46(30):5754-5756.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟凡松,喻燕妮,张秋歌,赵常悦,杨雯雯,栾亚宁,戴伟. 聚苯乙烯纳米塑料-植物蛋白冠的形成与特征[J]. 生物工程学报, 2023, 39(3): 1188-1201

复制
分享
文章指标
  • 点击次数:351
  • 下载次数: 1232
  • HTML阅读次数: 850
  • 引用次数: 0
历史
  • 收稿日期:2022-09-21
  • 录用日期:2023-01-08
  • 在线发布日期: 2023-03-10
  • 出版日期: 2023-03-25
文章二维码
您是第5990730位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司