水凝胶负载干细胞外泌体在组织再生领域的应用研究进展
作者:

Application of hydrogel-loaded stem cell exosomes in the field of tissue regeneration
Author:
  • TONG Yingying

    TONG Yingying

    International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai 201306, China;Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Weiyang

    JIN Weiyang

    International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai 201306, China;Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Guanghua

    YANG Guanghua

    International Research Center for Biological Sciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China;National Aquatic Animal Pathogen Collection Center, Shanghai Ocean University, Shanghai 201306, China;Aquatic Animal Genetics and Breeding Center, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,间充质干细胞(mesenchymal stem cells, MSCs)衍生的外泌体在组织再生领域引发许多关注。MSCs衍生外泌体作为细胞间通讯的信号分子,具有天然靶向性强、免疫原性低等特点,其通过MSCs旁分泌途径被细胞吸收,参与调控发挥促进细胞或组织再生功能。水凝胶作为再生医学领域的支架材料,具有良好的生物相容性、降解性等特点。将二者制成复合物联合使用后不仅可以提高外泌体在病变位置的滞留时间,且可通过原位注射等方法提高外泌体到达病变位置的剂量,在病变区域治疗效果显著且持续性改善。文中总结了现阶段外泌体与水凝胶复合物材料共同作用促进组织修复、再生的研究结果,以期为未来组织再生领域中的相关研究工作提供借鉴。

    Abstract:

    In recent years, mesenchymal stem cell (MSCs)-derived exosomes have attracted much attention in the field of tissue regeneration. Mesenchymal stem cell-derived exosomes are signaling molecules for communication among cells. They are characterized by natural targeting and low immunogenicity, and are mostly absorbed by cells through the paracrine pathway of mesenchymal stem cells. Moreover, they participate in the regulation and promotion of cell or tissue regeneration. As a scaffold material in regenerative medicine, hydrogel has good biocompatibility and degradability. Combining the two compounds can not only improve the retention time of exosomes at the lesion site, but also improve the dose of exosomes reaching the lesion site by in situ injection, and the therapeutic effect in the lesion area is significant and continuous. This paper summarizes the research results of the interaction of exocrine and hydrogel composite materials to promote tissue repair and regeneration, in order to facilitate research in the field of tissue regeneration in the future.

    参考文献
    [1] TKACH M, THÉRY C. Communication by extracellular vesicles:where we are and where we need to go[J]. Cell, 2016, 164(6):1226-1232.
    [2] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
    [3] LI MY, LI SS, DU CY, ZHANG YN, LI Y, CHU LQ, HAN X, GALONS H, ZHANG YM, SUN H, YU P. Exosomes from different cells:characteristics, modifications, and therapeutic applications[J]. European Journal of Medicinal Chemistry, 2020, 207:112784.
    [4] HAN Y, LI XZ, ZHANG YB, HAN YP, CHANG F, DING JX. Mesenchymal stem cells for regenerative medicine[J]. Cells, 2019, 8(8):886.
    [5] ANTIMISIARIS SG, MOURTAS S, MARAZIOTI A. Exosomes and exosome-inspired vesicles for targeted drug delivery[J]. Pharmaceutics, 2018, 10(4):218.
    [6] ZHANG S, CHU WC, LAI RC, LIM SK, HUI JHP, TOH WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis and Cartilage, 2016, 24(12):2135-2140.
    [7] FATIMA F, NAWAZ M. Stem cell-derived exosomes:roles in stromal remodeling, tumor progression, and cancer immunotherapy[J]. Chinese Journal of Cancer, 2015, 34(12):541-553.
    [8] YU B, ZHANG XM, LI XR. Exosomes derived from mesenchymal stem cells[J]. International Journal of Molecular Sciences, 2014, 15(3):4142-4157.
    [9] KIM S, LEE SK, KIM H, KIM TM. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J]. International Journal of Molecular Sciences, 2018, 19(10):3119.
    [10] ANNABI N, TAMAYOL A, UQUILLAS JA, AKBARI M, BERTASSONI LE, CHA C, CAMCI-UNAL G, DOKMECI MR, PEPPAS NA, KHADEMHOSSEINI A. 25th anniversary article:rational design and applications of hydrogels in regenerative medicine[J]. Advanced Materials:Deerfield Beach, Fla, 2014, 26(1):85-123.
    [11] BROWN TE, ANSETH KS. Spatiotemporal hydrogel biomaterials for regenerative medicine[J]. Chemical Society Reviews, 2017, 46(21):6532-6552.
    [12] REN PG, ZHANG H, DAI Z, REN F, WU YD, HOU RX, ZHU YB, FU J. Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair[J]. Journal of Materials Chemistry B, 2019, 7(36):5490-5501.
    [13] BRENNAN MÁ, LAYROLLE P, MOONEY DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration[J]. Advanced Functional Materials, 2020, 30(37):1909125.
    [14] PLUCHINO S, SMITH JA. Explicating exosomes:reclassifying the rising stars of intercellular communication[J]. Cell, 2019, 177(2):225-227.
    [15] THÉRY C, AMIGORENA S, RAPOSO G, CLAYTON A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Current Protocols in Cell Biology, 2006, Chapter 3:Unit 3.22.
    [16] BIAN SY, ZHANG LP, DUAN LF, WANG X, MIN Y, YU HP. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. Journal of Molecular Medicine:Berlin, Germany, 2014, 92(4):387-397.
    [17] ZAKRZEWSKI W, DOBRZYŃSKI M, SZYMONOWICZ M, RYBAK Z. Stem cells:past, present, and future[J]. Stem Cell Research & Therapy, 2019, 10(1):68.
    [18] ZHANG HJ, WANG ZZ. Mechanisms that mediate stem cell self-renewal and differentiation[J]. Journal of Cellular Biochemistry, 2008, 103(3):709-718.
    [19] HWANG I, UCHIDA H, DAI ZW, LI F, SANCHEZ T, LOCASALE JW, CANTLEY LC, ZHENG HW, PAIK J. Cellular stress signaling activates type-I IFN response through FOXO3- regulated lamin posttranslational modification[J]. Nature Communications, 2021, 12:640.
    [20] YAMANAKA S. Pluripotent stem cell-based cell therapy-promise and challenges[J]. Cell Stem Cell, 2020, 27(4):523-531.
    [21] FAFIÁN-LABORA JA, RODRÍGUEZ-NAVARRO JA, O'LOGHLEN A. Small extracellular vesicles have GST activity and ameliorate senescence-related tissue damage[J]. Cell Metabolism, 2020, 32(1):71-86.e5.
    [22] MERINO-GONZÁLEZ C, ZUÑIGA FA, ESCUDERO C, ORMAZABAL V, REYES C, NOVA-LAMPERTI E, SALOMÓN C, AGUAYO C. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis:potencial clinical application[J]. Frontiers in Physiology, 2016, 7:24.
    [23] SHABBIR A, COX A, RODRIGUEZ-MENOCAL L, SALGADO M, van BADIAVAS E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells and Development, 2015, 24(14):1635-1647.
    [24] XING HY, ZHANG ZJ, MAO QJ, WANG CG, ZHOU YL, ZHOU XP, YING LW, XU HB, HU SJ, ZHANG N. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration[J]. Journal of Nanobiotechnology, 2021, 19(1):264.
    [25] TANG QM, LU B, HE J, CHEN X, FU QL, HAN HJ, LUO CQ, YIN HF, QIN ZW, LYU DN, ZHANG LF, ZHOU M, YAO K. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration[J]. Biomaterials, 2022, 280:121320.
    [26] SILVA AM, TEIXEIRA JH, ALMEIDA MI, GONÇALVES RM, BARBOSA MA, SANTOS SG. Extracellular vesicles:immunomodulatory messengers in the context of tissue repair/regeneration[J]. European Journal of Pharmaceutical Sciences, 2017, 98:86-95.
    [27] WANG DN, YANG XW, LIU Q, YU L, DING JD. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture[J]. Journal of Materials Chemistry B, 2018, 6(38):6067-6079.
    [28] LEIJTEN J, SEO J, YUE K, TRUJILLO-DE SANTIAGO G, TAMAYOL A, RUIZ-ESPARZA GU, SHIN SR, SHARIFI R, NOSHADI I, ÁLVAREZ MM, ZHANG YS, KHADEMHOSSEINI A. Spatially and temporally controlled hydrogels for tissue engineering[J]. Materials Science and Engineering:R:Reports, 2017, 119:1-35.
    [29] MAHDAVINIA GR, MOUSANEZHAD S, HOSSEINZADEH H, DARVISHI F, SABZI M. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption[J]. Carbohydrate Polymers, 2016, 147:379-391.
    [30] ZHU JM, MARCHANT RE. Design properties of hydrogel tissue-engineering scaffolds[J]. Expert Review of Medical Devices, 2011, 8(5):607-626.
    [31] JUNG S, ABEL JH, STARGER JL, YI H. Porosity-tuned chitosan-polyacrylamide hydrogel microspheres for improved protein conjugation[J]. Biomacromolecules, 2016, 17(7):2427-2436.
    [32] YANG GH, SADEG N, TAHAR HB. New potential in situ anticancer agent derived from[188Re] rhenium nitro-imidazole ligand loaded 5th generation poly-L-lysine dendrimer for treatment of transplanted human liver carcinoma in nude mice[J]. Drug Designing:Open Access, 2017, 6(1):1-7.
    [33] HAFID BT, SADEG N, YANG G. Intra-tumoral hepatic administration under CT stereotactic and ultrasound guidance of in situ anti-cancer agent derived from[188re] rhenium nitro-imidazole ligand loaded 5th generation poly-L-lysine dendrimer[J]. International Journal of Radiation Oncology Biology Physics, 2019, 105(1):E642.
    [34] PACELLI S, PAOLICELLI P, DREESEN I, KOBAYASHI S, VITALONE A, CASADEI MA. Injectable and photocross-linkable gels based on gellan gum methacrylate:a new tool for biomedical application[J]. International Journal of Biological Macromolecules, 2015, 72:1335-1342.
    [35] ZHAO XH, CHEN XY, YUK H, LIN ST, LIU XY, PARADA G. Soft materials by design:unconventional polymer networks give extreme properties[J]. Chemical Reviews, 2021, 121(8):4309-4372.
    [36] BOATENG J, CATANZANO O. Advanced therapeutic dressings for effective wound healing-a review[J]. Journal of Pharmaceutical Sciences, 2015, 104(11):3653-3680.
    [37] RICE JJ, MARTINO MM, DE LAPORTE L, TORTELLI F, BRIQUEZ PS, HUBBELL JA. Engineering the regenerative microenvironment with biomaterials[J]. Advanced Healthcare Materials, 2013, 2(1):57-71.
    [38] PEÑA B, LAUGHTER M, JETT S, ROWLAND TJ, TAYLOR MRG, MESTRONI L, PARK D. Injectable hydrogels for cardiac tissue engineering[J]. Macromolecular Bioscience, 2018, 18(6):e1800079.
    [39] BRUNO S, TAPPARO M, COLLINO F, CHIABOTTO G, DEREGIBUS MC, SOARES LINDOSO R, NERI F, KHOLIA S, GIUNTI S, WEN SC, QUESENBERRY P, CAMUSSI G. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells[J]. Tissue Engineering Part A, 2017, 23(21/22):1262-1273.
    [40] LAI RC, ARSLAN F, LEE MM, SZE NSK, CHOO A, CHEN TS, SALTO-TELLEZ M, TIMMERS L, LEE CN, EL OAKLEY RM, PASTERKAMP G, de KLEIJN DPV, LIM SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Research, 2010, 4(3):214-222.
    [41] IMAI T, TAKAHASHI Y, NISHIKAWA M, KATO K, MORISHITA M, YAMASHITA T, MATSUMOTO A, CHAROENVIRIYAKUL C, TAKAKURA Y. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice[J]. Journal of Extracellular Vesicles, 2015, 4:26238.
    [42] YU HL, CHENG J, SHI WL, REN B, ZHAO FY, SHI YY, YANG P, DUAN XN, ZHANG JY, FU X, HU XQ, AO YF. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells[J]. Acta Biomaterialia, 2020, 106:328-341.
    [43] SHI Q, QIAN ZY, LIU DH, SUN J, WANG X, LIU HC, XU J, GUO XM. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model[J]. Frontiers in Physiology, 2017, 8:904.
    [44] THOMAS V, YALLAPU MM, SREEDHAR B, BAJPAI SK. Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels:highly efficient antibacterial nanocomposites[J]. Journal of Applied Polymer Science, 2008:NA.
    [45] LV KQ, LI QJ, ZHANG L, WANG YC, ZHONG ZW, ZHAO J, LIN XX, WANG JY, ZHU KY, XIAO CC, KE CL, ZHONG SH, WU XP, CHEN JH, YU H, ZHU W, LI X, WANG B, TANG RK, WANG JA, HUANG JY, HU XY. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24):7403-7416.
    [46] QIN YH, WANG L, GAO ZL, CHEN GY, ZHANG CQ. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J]. Scientific Reports, 2016, 6:21961.
    [47] WANG CG, WANG M, XU TZ, ZHANG XX, LIN C, GAO WY, XU HZ, LEI B, MAO C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1):65-76.
    [48] MATHEW AP, UTHAMAN S, CHO KH, CHO CS, PARK IK. Injectable hydrogels for delivering biotherapeutic molecules[J]. International Journal of Biological Macromolecules, 2018, 110:17-29.
    [49] GUO SC, TAO SC, YIN WJ, QI X, YUAN T, ZHANG CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model[J]. Theranostics, 2017, 7(1):81-96.
    [50] LI M, KE QF, TAO SC, GUO SC, RUI BY, GUO YP. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing[J]. Journal of Materials Chemistry B, 2016, 4(42):6830-6841.
    [51] HU HX, DONG LL, BU ZH, SHEN YF, LUO J, ZHANG H, ZHAO SC, LV F, LIU ZT. MiR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration[J]. Journal of Extracellular Vesicles, 2020, 9(1):1778883.
    [52] SINNO H, PRAKASH S. Complements and the wound healing cascade:an updated review[J]. Plastic Surgery International, 2013, 2013:146764.
    [53] TOTTOLI EM, DORATI R, GENTA I, CHIESA E, PISANI S, CONTI B. Skin wound healing process and new emerging technologies for skin wound care and regeneration[J]. Pharmaceutics, 2020, 12(8):735.
    [54] YANG JY, CHEN ZY, PAN DY, LI HZ, SHEN J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration[J]. International Journal of Nanomedicine, 2020, 15:5911-5926.
    [55] WANG Y, CAO Z, WEI Q, MA K, HU W, HUANG Q, SU J, LI H, ZHANG C, FU X. VH298-loaded extracellular vesicles released from gelatin methacryloyl hydrogel facilitate diabetic wound healing by HIF-1α-mediated enhancement of angiogenesis[J]. Acta Biomaterialia, 2022, 147:342-355.
    [56] SHIEKH PA, SINGH A, KUMAR A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J]. Biomaterials, 2020, 249:120020.
    [57] HAN CS, ZHOU J, LIANG C, LIU B, PAN XB, ZHANG Y, WANG YL, YAN B, XIE WP, LIU F, YU XY, LI YX. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair[J]. Biomaterials Science, 2019, 7(7):2920-2933.
    [58] LIU BH, LEE BW, NAKANISHI K, VILLASANTE A, WILLIAMSON R, METZ J, KIM J, KANAI M, BI L, BROWN K, DI PAOLO G, HOMMA S, SIMS PA, TOPKARA VK, VUNJAK-NOVAKOVIC G. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nature Biomedical Engineering, 2018, 2(5):293-303.
    [59] HAN CS, ZHOU J, LIU B, LIANG C, PAN XB, ZHANG Y, ZHANG YQ, WANG YL, SHAO LB, ZHU B, WANG JJ, YIN Q, YU XY, LI YX. Delivery of miR-675 by stem cell-derived exosomes encapsulated in silk fibroin hydrogel prevents aging-induced vascular dysfunction in mouse hindlimb[J]. Materials Science & Engineering C, Materials for Biological Applications, 2019, 99:322-332.
    [60] ZHANG KY, ZHAO XN, CHEN XN, WEI YZ, DU W, WANG YB, LIU LN, ZHAO WA, HAN ZB, KONG DL, ZHAO Q, GUO ZK, HAN ZC, LIU N, MA FX, LI ZJ. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Applied Materials & Interfaces, 2018, 10(36):30081-30091.
    [61] LI LM, ZHANG Y, MU JF, CHEN JC, ZHANG CY, CAO HC, GAO JQ. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J]. Nano Letters, 2020, 20(6):4298-4305.
    [62] 卢亮. 外泌体结合水凝胶在创伤性颅脑损伤后神经修复疗效研究[D]. 汕头:汕头大学硕士学位论文, 2021. LU L. The experimental study on the efficacy of exosomes combining hydrogel on neural repair after traumatic brain injury[D]. Shantou:Master's Thesis of Shantou University, 2021(in Chinese).
    [63] YANG Z, YANG Y, XU YC, JIANG WQ, SHAO Y, XING JH, CHEN YB, HAN Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J]. Stem Cell Research & Therapy, 2021, 12(1):442.
    [64] YANG S, ZHU B, YIN P, ZHAO LS, WANG YZ, FU ZG, DANG RJ, XU J, ZHANG JJ, WEN N. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration[J]. ACS Biomaterials Science & Engineering, 2020, 6(3):1590-1602.
    [65] ZHANG YT, XIE Y, HAO ZC, ZHOU PY, WANG PF, FANG S, LI L, XU SG, XIA Y. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis[J]. ACS Applied Materials & Interfaces, 2021, 13(16):18472-18487.
    [66] 张浩. 构建含有间充质干细胞和外泌体的脱细胞组织水凝胶用于修复大体积肌肉缺损的实验研究[D]. 西安:第四军医大学博士学位论文, 2016. ZHANG H. The study of constructing the bio-hydrogel derived from decellularized tissue containing mesenchyreal stem cells and exosomes for the treatment of volumetric muscle loss[D]. Xi'an:Doctoral Dissertation of The Fourth Military Medical University, 2016(in Chinese).
    [67] SHI GD, WANG YC, WANG ZW, THORESON AR, JACOBSON DS, AMADIO PC, BEHFAR A, MORAN SL, ZHAO CF. A novel engineered purified exosome product patch for tendon healing:an explant in an ex vivo model[J]. Journal of Orthopaedic Research, 2021, 39(8):1825-1837.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

佟莹莹,金威洋,杨光华. 水凝胶负载干细胞外泌体在组织再生领域的应用研究进展[J]. 生物工程学报, 2023, 39(4): 1351-1362

复制
分享
文章指标
  • 点击次数:622
  • 下载次数: 1998
  • HTML阅读次数: 1646
  • 引用次数: 0
历史
  • 收稿日期:2022-07-18
  • 录用日期:2022-10-28
  • 在线发布日期: 2023-04-14
  • 出版日期: 2023-04-25
文章二维码
您是第6020023位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司