用于肿瘤治疗的免疫检查点抑制剂相关预测生物标志物的研究进展
作者:
基金项目:

中央高校基本科研业务费(buctrc201910);2021年新疆科协青年人才托举工程项目;京津冀基础研究合作专项[19JCZDJC65800(Z)];新疆生产建设兵团重点领域科技攻关计划(2022AB022)


Advances in predictive biomarkers associated with immune checkpoint inhibitors for tumor therapy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [101]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    恶性肿瘤是严重威胁人类健康和社会发展的疾病。传统的肿瘤治疗方法如手术、放疗、化疗和靶向治疗等不能完全满足临床治疗的需求,新兴的免疫治疗成为了肿瘤治疗领域的研究热点。免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)作为一种肿瘤免疫治疗方法,已获批用于治疗多种肿瘤,如肺癌、肝癌、胃癌和结直肠癌等。然而,ICIs在临床使用过程中,只有少数患者会出现持久反应,一些患者还会出现耐药和不良反应。因此,预测生物标志物的鉴定和开发对提高ICIs的治疗效果至关重要。肿瘤ICIs预测生物标志物主要包括肿瘤生物标志物、肿瘤微环境生物标志物、循环相关生物标志物、宿主环境生物标志物以及组合生物标志物等,对患者筛查、个体化治疗和预后评估具有重要意义。本文就肿瘤ICIs治疗预测生物标志物的前沿进展作一综述。

    Abstract:

    Malignant tumors are diseases that seriously threaten human health and social development. Traditional tumor therapies such as surgery, radiotherapy, chemotherapy and targeted therapy cannot fully meet the needs of clinical treatment, and emerging immunotherapy has become a research hotspot in the field of tumor treatment. Immune checkpoint inhibitors (ICIs) have been approved as a tumor immunotherapy method for the treatment of various tumors, such as lung cancer, liver cancer, stomach cancer and colorectal cancer, etc. However, during the clinical use of ICIs, only a small number of patients experienced durable responses, which also led to drug resistance and adverse reactions. Therefore, the identification and development of predictive biomarkers is crucial to improve the therapeutic efficacy of ICIs. The predictive biomarkers of tumor ICIs mainly include tumor biomarkers, tumor microenvironment biomarkers, circulation-related biomarkers, host environmental biomarkers and combinatorial biomarkers. They are of great significance for screening, individualized treatment and prognosis evaluation of tumor patients. This article reviews the advances of predictive markers for tumor ICIs therapy.

    参考文献
    [1] SUNG H, FERLAY J, SIEGEL RL LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F. Global cancer statistics 2020:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a Cancer Journal for Clinicians, 2021, 71(3):209-249.
    [2] HAJDU SI. A note from history:Rudolph Virchow, pathologist, armed revolutionist, politician, and anthropologist[J]. Annals of Clinical and Laboratory Science, 2005, 35(2):203-205.
    [3] KOO SL, WANG WW, TOH HC. Cancer immunotherapy-the target is precisely on the cancer and also not[J]. Annals Academy of Medicine Singapore, 2018, 47(9):381-387.
    [4] PARISH CR. Cancer immunotherapy:the past, the present and the future[J]. Immunology and Cell Biology, 2003, 81(2):106-113.
    [5] DOBOSZ P, DZIECIATKOWSKI T. The intriguing history of cancer immunotherapy[J]. Frontiers in Immunology, 2019, 10:2965.
    [6] SMYTH MJ, TENG MW. 2018 Nobel Prize in physiology or medicine[J]. Clinical & Translational Immunology, 2018, 7(10):e1041.
    [7] 曾武威. 2018年诺贝尔生理学或医学奖简介[J]. 解剖学报, 2019, 50(1):1-2. ZENG WW. The Nobel Prize in Physiology or Medicine 2018[J]. Acta Anatomica Sinica, 2019, 50(1):1-2(in chinese).
    [8] 钟晓琳, 王跃春. 也谈诺贝尔奖的得与失——从陈列平教授无缘2018年"诺贝尔生理学或医学奖"谈起[J]. 医学与哲学, 2020, 41(18):63-67. ZHONG XL, WANG YC. The Gain and the Loss of Nobel Prize:Talking from Professor Chen Lieping Who Missed 2018 Nobel Prize in Physiology or Medicine[J]. Medicine and Philosophy, 2020, 41(18):63-67(in chinese).
    [9] CAMERON F, WHITESIDE G, PERRY C. Ipilimumab:first global approval[J]. Drugs, 2011, 71(8):1093-1104.
    [10] GONG J, CHEHRAZI-RAFFLE A, REDDI S, SALGIA R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy:a comprehensive review of registration trials and future considerations[J]. Journal for Immunotherapy of Cancer, 2018, 6(1):8.
    [11] SHARMA P, HU-LIESKOVAN S, WARGO JA, RIBAS A. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4):707-723.
    [12] SCHOENFELD AJ, HELLMANN MD. ACQUIRED resistance to immune checkpoint inhibitors[J]. Cancer Cell, 2020, 37(4):443-455.
    [13] PÉREZ-RUIZ E, MELERO I, KOPECKA J, SARMENTO-RIBEIRO AB, GARCÍA-ARANDA M, de LAS RIVAS J. Cancer immunotherapy resistance based on immune checkpoints inhibitors:targets, biomarkers, and remedies[J]. Drug Resistance Updates, 2020, 53:100718.
    [14] CALIFF RM. Biomarker definitions and their applications[J]. Experimental Biology and Medicine:Maywood, N J, 2018, 243(3):213-221.
    [15] PARDOLL DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nature Reviews Cancer, 2012, 12(4):252-264.
    [16] WU YL, CHEN WY, XU ZP, GU WY. PD-L1 distribution and perspective for cancer immunotherapy- blockade, knockdown, or inhibition[J]. Frontiers in Immunology, 2019, 10:2022.
    [17] PARK S, CHOI YD, KIM J, KHO BG, PARK CK, OH IJ, KIM YC. Efficacy of immune checkpoint inhibitors according to PD-L1 tumor proportion scores in non-small cell lung cancer[J]. Thoracic Cancer, 2020, 11(2):408-414.
    [18] HERBST RS, GARON EB, KIM DW, CHO BC, PEREZ-GRACIA JL, HAN JY, ARVIS CD, MAJEM M, FORSTER MD, MONNET I, NOVELLO S, SZALAI Z, GUBENS MA, SU WC, CERESOLI GL, SAMKARI A, JENSEN EH, LUBINIECKI GM, BAAS P. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 study[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2020, 38(14):1580-1590.
    [19] SHA D, JIN ZH, BUDCZIES J, KLUCK K, STENZINGER A, SINICROPE FA. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discovery, 2020, 10(12):1808-1825.
    [20] YI M, QIN S, ZHAO WH, YU SN, CHU Q, WU KM. The role of neoantigen in immune checkpoint blockade therapy[J]. Experimental Hematology & Oncology, 2018, 7:28.
    [21] CHAN TA, YARCHOAN M, JAFFEE E, SWANTON C, QUEZADA SA, STENZINGER A, PETERS S. Development of tumor mutation burden as an immunotherapy biomarker:utility for the oncology clinic[J]. Annals of Oncology:Official Journal of the European Society for Medical Oncology, 2019, 30(1):44-56.
    [22] STENZINGER A, ALLEN JD, MAAS J, STEWART MD, MERINO DM, WEMPE MM, DIETEL M. Tumor mutational burden standardization initiatives:recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions[J]. Genes, Chromosomes & Cancer, 2019, 58(8):578-588.
    [23] HELLMANN MD, CIULEANU TE, PLUZANSKI A, LEE JS, OTTERSON GA, AUDIGIER-VALETTE C, MINENZA E, LINARDOU H, BURGERS S, SALMAN P, BORGHAEI H, RAMALINGAM SS, BRAHMER J, RECK M, O'BYRNE KJ, GEESE WJ, GREEN G, CHANG H, SZUSTAKOWSKI J, BHAGAVATHEESWARAN P, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. The New England Journal of Medicine, 2018, 378(22):2093-2104.
    [24] RIZK EM, SEFFENS AM, TRAGER MH, MOORE MR, GESKIN LJ, GARTRELL-CORRADO RD, WONG W, SAENGER YM. Biomarkers predictive of survival and response to immune checkpoint inhibitors in melanoma[J]. American Journal of Clinical Dermatology, 2020, 21(1):1-11.
    [25] WANG F, WEI XL, WANG FH, XU N, SHEN L, DAI GH, YUAN XL, CHEN Y, YANG SJ, SHI JH, HU XC, LIN XY, ZHANG QY, FENG JF, BA Y, LIU YP, LI W, SHU YQ, JIANG Y, LI Q, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432[J]. Annals of Oncology, 2019, 30(9):1479-1486.
    [26] ZHAO PF, LI L, JIANG XY, LI Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy[J]. Journal of Hematology & Oncology, 2019, 12(1):54.
    [27] CICEK MS, LINDOR NM, GALLINGER S, BAPAT B, HOPPER JL, JENKINS MA, YOUNG J, BUCHANAN D, WALSH MD, le MARCHAND L, BURNETT T, NEWCOMB PA, GRADY WM, HAILE RW, CASEY G, PLUMMER SJ, KRUMROY LA, BARON JA, THIBODEAU SN. Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors[J]. The Journal of Molecular Diagnostics, 2011, 13(3):271-281.
    [28] HITCHINS MP, WARD RL. Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer[J]. Journal of Medical Genetics, 2009, 46(12):793-802.
    [29] COLLE R, COHEN R, COCHEREAU D, DUVAL A, LASCOLS O, LOPEZ-TRABADA D, AFCHAIN P, TROUILLOUD I, PARC Y, LEFEVRE JH, FLÉJOU JF, SVRCEK M, ANDRÉ T. Immunotherapy and patients treated for cancer with microsatellite instability[J]. Bulletin Du Cancer, 2017, 104(1):42-51.
    [30] LE DT, URAM JN, WANG H, BARTLETT BR, KEMBERLING H, EYRING AD, SKORA AD, LUBER BS, AZAD NS, LAHERU D, BIEDRZYCKI B, DONEHOWER RC, ZAHEER A, FISHER GA, CROCENZI TS, LEE JJ, DUFFY SM, GOLDBERG RM, de la CHAPELLE A, KOSHIJI M, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. The New England Journal of Medicine, 2015, 372(26):2509-2520.
    [31] JANJIGIAN YY, BENDELL J, CALVO E, KIM JW, ASCIERTO PA, SHARMA P, OTT PA, PELTOLA K, JAEGER D, EVANS J, de BRAUD F, CHAU I, HARBISON CT, DORANGE C, TSCHAIKA M, LE DT. CheckMate-032 study:efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2018, 36(28):2836-2844.
    [32] VILLALOBOS P, WISTUBA II. Lung cancer biomarkers[J]. Hematology/Oncology Clinics of North America, 2017, 31(1):13-29.
    [33] RUDE VOLDBORG B, DAMSTRUP L, SPANG- THOMSEN M, SKOVGAARD POULSEN H. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials[J]. Annals of Oncology, 1997, 8(12):1197-1206.
    [34] HARATANI K, HAYASHI H, TANAKA T, KANEDA H, TOGASHI Y, SAKAI K, HAYASHI K, TOMIDA S, CHIBA Y, YONESAKA K, NONAGASE Y, TAKAHAMA T, TANIZAKI J, TANAKA K, YOSHIDA T, TANIMURA K, TAKEDA M, YOSHIOKA H, ISHIDA T, MITSUDOMI T, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment[J]. Annals of Oncology, 2017, 28(7):1532-1539.
    [35] HASTINGS K, YU HA, WEI W, SANCHEZ-VEGA F, DEVEAUX M, CHOI J, RIZVI H, LISBERG A, TRUINI A, LYDON CA, LIU Z, HENICK BS, WURTZ A, CAI G, PLODKOWSKI AJ, LONG NM, HALPENNY DF, KILLAM J, OLIVA I, SCHULTZ N, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer[J]. Annals of Oncology, 2019, 30(8):1311-1320.
    [36] DONG ZY, ZHONG WZ, ZHANG XC, SU J, XIE Z, LIU SY, TU HY, CHEN HJ, SUN YL, ZHOU Q, YANG JJ, YANG XN, LIN JX, YAN HH, ZHAI HR, YAN LX, LIAO RQ, WU SP, WU YL. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2017, 23(12):3012-3024.
    [37] SHACKELFORD DB, SHAW RJ. The LKB1-AMPK pathway:metabolism and growth control in tumour suppression[J]. Nature Reviews Cancer, 2009, 9(8):563-575.
    [38] ARBOUR KC, JORDAN E, KIM HR, DIENSTAG J, YU HA, SANCHEZ-VEGA F, LITO P, BERGER M, SOLIT DB, HELLMANN M, KRIS MG, RUDIN CM, NI A, ARCILA M, LADANYI M, RIELY GJ. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2018, 24(2):334-340.
    [39] FRANK R, SCHEFFLER M, MERKELBACH-BRUSE S, IHLE MA, KRON A, RAUER M, UECKEROTH F, KÖNIG K, MICHELS S, FISCHER R, EISERT A, FASSUNKE J, HEYDT C, SERKE M, KO YD, GERIGK U, GEIST T, KAMINSKY B, HEUKAMP LC, CLEMENT-ZIZA M, et al. Clinical and pathological characteristics of KEAP1- and NFE2L2- mutated non-small cell lung carcinoma (NSCLC)[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2018, 24(13):3087-3096.
    [40] SHANG XL, LI ZX, SUN J, ZHAO CL, LIN JM, WANG HY. Survival analysis for non-squamous NSCLC patients harbored STK11 or KEAP1 mutation receiving atezolizumab[J]. Lung Cancer, 2021, 154:105-112.
    [41] MCGRANAHAN N, FURNESS AJS, ROSENTHAL R, RAMSKOV S, LYNGAA R, SAINI SK, JAMAL-HANJANI M, WILSON GA, BIRKBAK NJ, HILEY CT, WATKINS TBK, SHAFI S, MURUGAESU N, MITTER R, AKARCA AU, LINARES J, MARAFIOTI T, HENRY JY, van ALLEN EM, MIAO DA, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280):1463-1469.
    [42] ANAGNOSTOU V, SMITH KN, FORDE PM, NIKNAFS N, BHATTACHARYA R, WHITE J, ZHANG T, ADLEFF V, PHALLEN J, WALI N, HRUBAN C, GUTHRIE VB, RODGERS K, NAIDOO J, KANG H, SHARFMAN W, GEORGIADES C, VERDE F, ILLEI P, LI QK, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer[J]. Cancer Discovery, 2017, 7(3):264-276.
    [43] LAZDUN Y, SI H, CREASY T, RANADE K, HIGGS BW, STREICHER K, DURHAM NM. A new pipeline to predict and confirm tumor neoantigens predict better response to immune checkpoint blockade[J]. Molecular Cancer Research:MCR, 2021, 19(3):498-506.
    [44] CHIOU SH, SHEU BC, CHANG WC, HUANG SC, HONG-NERNG H. Current concepts of tumor- infiltrating lymphocytes in human malignancies[J]. Journal of Reproductive Immunology, 2005, 67(1/2):35-50.
    [45] STANTON SE, ADAMS S, DISIS ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes:a systematic review[J]. JAMA Oncology, 2016, 2(10):1354-1360.
    [46] GATAA I, MEZQUITA L, ROSSONI C, AUCLIN E, KOSSAI M, ABOUBAKAR F, LE MOULEC S, MASSÉ J, MASSON M, RADOSEVIC-ROBIN N, ALEMANY P, ROUANNE M, BLUTHGEN V, HENDRIKS L, CARAMELLA C, GAZZAH A, PLANCHARD D, PIGNON JP, BESSE B, ADAM J. Tumour-infiltrating lymphocyte density is associated with favourable outcome in patients with advanced non-small cell lung cancer treated with immunotherapy[J]. European Journal of Cancer, 2021, 145:221-229.
    [47] nbsp; DIEM S, ALI OH, ACKERMANN CJ, BOMZE D, KOELZER VH, JOCHUM W, SPEISER DE, MERTZ KD, FLATZ L. Tumor infiltrating lymphocytes in lymph node metastases of stage III melanoma correspond to response and survival in nine patients treated with ipilimumab at the time of stage IV disease[J]. Cancer Immunology, Immunotherapy, 2018, 67(1):39-45.
    [48] BALATONI T, MOHOS A, PAPP E, SEBESTYÉN T, LISZKAY G, OLÁH J, VARGA A, LENGYEL Z, EMRI G, GAUDI I, LADÁNYI A. Tumor-infiltrating immune cells as potential biomarkers predicting response to treatment and survival in patients with metastatic melanoma receiving ipilimumab therapy[J]. Cancer Immunology, Immunotherapy, 2018, 67(1):141-151.
    [49] BENCI JL, XU BH, QIU Y, WU TJ, DADA H, TWYMAN-SAINT VICTOR C, CUCOLO L, LEE DSM, PAUKEN KE, HUANG AC, GANGADHAR TC, AMARAVADI RK, SCHUCHTER LM, FELDMAN MD, ISHWARAN H, VONDERHEIDE RH, MAITY A, WHERRY EJ, MINN AJ. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade[J]. Cell, 2016, 167(6):1540-1554.e12.
    [50] GETTINGER S, CHOI J, HASTINGS K, TRUINI A, DATAR I, SOWELL R, WURTZ A, DONG WL, CAI GP, MELNICK MA, DU VY, SCHLESSINGER J, GOLDBERG SB, CHIANG A, SANMAMED MF, MELERO I, AGORRETA J, MONTUENGA LM, LIFTON R, FERRONE S, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer[J]. Cancer Discovery, 2017, 7(12):1420-1435.
    [51] SAKUISHI K, APETOH L, SULLIVAN JM, BLAZAR BR, KUCHROO VK, ANDERSON AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity[J]. Journal of Experimental Medicine, 2010, 207(10):2187-2194.
    [52] KOYAMA S, AKBAY EA, LI YY, HERTER-SPRIE GS, BUCZKOWSKI KA, RICHARDS WG, GANDHI L, REDIG AJ, RODIG SJ, ASAHINA H, JONES RE, KULKARNI MM, KURAGUCHI M, PALAKURTHI S, FECCI PE, JOHNSON BE, JANNE PA, ENGELMAN JA, GANGADHARAN SP, COSTA DB, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nature Communications, 2016, 7:10501.
    [53] LIMAGNE E, RICHARD C, THIBAUDIN M, FUMET JD, TRUNTZER C, LAGRANGE A, FAVIER L, COUDERT B, GHIRINGHELLI F. Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients[J]. OncoImmunology, 2019, 8(4):e1564505.
    [54] WANG G, TAI RS, WU YS, YANG SR, WANG JJ, YU XL, LEI L, SHAN ZY, LI N. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine & Growth Factor Reviews, 2020, 52:1-14.
    [55] ZHANG Q, BI JC, ZHENG XD, CHEN YY, WANG H, WU WY, WANG ZG, WU Q, PENG H, WEI HM, SUN R, TIAN ZG. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nature Immunology, 2018, 19(7):723-732.
    [56] KAWASHIMA S, INOZUME T, KAWAZU M, UENO T, NAGASAKI J, TANJI E, HONOBE A, OHNUMA T, KAWAMURA T, UMEDA Y, NAKAMURA Y, KAWASAKI T, KINIWA Y, YAMASAKI O, FUKUSHIMA S, IKEHARA Y, MANO H, SUZUKI Y, NISHIKAWA H, MATSUE H, et al. TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment[J]. Journal for Immunotherapy of Cancer, 2021, 9(11):e003134.
    [57] WANG L, RUBINSTEIN R, LINES JL, WASIUK A, AHONEN C, GUO YX, LU LF, GONDEK D, WANG Y, FAVA RA, FISER A, ALMO S, NOELLE RJ. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses[J]. The Journal of Experimental Medicine, 2011, 208(3):577-592.
    [58] le MERCIER I, CHEN WN, LINES JL, DAY M, LI JN, SERGENT P, NOELLE RJ, WANG L. VISTA regulates the development of protective antitumor immunity[J]. Cancer Research, 2014, 74(7):1933- 1944.
    [59] BLANDO J, SHARMA A, HIGA MG, ZHAO H, VENCE L, YADAV SS, KIM J, SEPULVEDA AM, SHARP M, MAITRA A, WARGO J, TETZLAFF M, BROADDUS R, KATZ MHG, VARADHACHARY GR, OVERMAN M, WANG HM, YEE C, BERNATCHEZ C, IACOBUZIO-DONAHUE C, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(5):1692-1697.
    [60] KAKAVAND H, JACKETT LA, MENZIES AM, GIDE TN, CARLINO MS, SAW RPM, THOMPSON JF, WILMOTT JS, LONG GV, SCOLYER RA. Negative immune checkpoint regulation by VISTA:a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients[J]. Modern Pathology, 2017, 30(12):1666-1676.
    [61] TREMBLAY-LEMAY R, RASTGOO N, CHANG H. Modulating PD-L1 expression in multiple myeloma:an alternative strategy to target the PD-1/PD-L1 pathway[J]. Journal of Hematology & Oncology, 2018, 11(1):46.
    [62] TENG FF, MENG XJ, KONG L, YU JM. Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy:a systematic review[J]. Cancer Letters, 2018, 414:166-173.
    [63] KARACHALIOU N, GONZALEZ-CAO M, CRESPO G, DROZDOWSKYJ A, ALDEGUER E, GIMENEZ- CAPITAN A, TEIXIDO C, MOLINA-VILA MA, VITERI S, de los LLANOS GIL M, ALGARRA SM, PEREZ-RUIZ E, MARQUEZ-RODAS I, RODRIGUEZ- ABREU D, BLANCO R, PUERTOLAS T, ROYO MA, ROSELL R. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients[J]. Therapeutic Advances in Medical Oncology, 2018, 10:1758834017749748.
    [64] GAO JJ, SHI LZ, ZHAO H, CHEN JF, XIONG LW, HE QM, CHEN TH, ROSZIK J, BERNATCHEZ C, WOODMAN SE, CHEN PL, HWU P, ALLISON JP, FUTREAL A, WARGO JA, SHARMA P. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy[J]. Cell, 2016, 167(2):397-404.e9.
    [65] GALDIERO MR, BONAVITA E, BARAJON I, GARLANDA C, MANTOVANI A, JAILLON S. Tumor associated macrophages and neutrophils in cancer[J]. Immunobiology, 2013, 218(11):1402-1410.
    [66] GUTHRIE GJK, CHARLES KA, ROXBURGH CSD, HORGAN PG, MCMILLAN DC, CLARKE SJ. The systemic inflammation-based neutrophil-lymphocyte ratio:experience in patients with cancer[J]. Critical Reviews in Oncology/Hematology, 2013, 88(1):218-230.
    [67] FERRUCCI PF, ASCIERTO PA, PIGOZZO J, del VECCHIO M, MAIO M, ANTONINI CAPPELLINI GC, GUIDOBONI M, QUEIROLO P, SAVOIA P, MANDALÀ M, SIMEONE E, VALPIONE S, ALTOMONTE M, SPAGNOLO F, COCOROCCHIO E, GANDINI S, GIANNARELLI D, MARTINOLI C. Baseline neutrophils and derived neutrophil-to- lymphocyte ratio:prognostic relevance in metastatic melanoma patients receiving ipilimumab[J]. Annals of Oncology, 2016, 27(4):732-738.
    [68] DHARMAPURI S, ÖZBEK U, LIN JY, SUNG M, SCHWARTZ M, BRANCH AD, ANG C. Predictive value of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in advanced hepatocellular carcinoma patients treated with anti-PD-1 therapy[J]. Cancer Medicine, 2020, 9(14):4962-4970.
    [69] BILEN MA, DUTCHER GMA, LIU Y, RAVINDRANATHAN D, KISSICK HT, CARTHON BC, KUCUK O, HARRIS WB, MASTER VA. Association between pretreatment neutrophil-to- lymphocyte ratio and outcome of patients with metastatic renal-cell carcinoma treated with nivolumab[J]. Clinical Genitourinary Cancer, 2018, 16(3):e563-e575.
    [70] MENTER DG, KOPETZ S, HAWK E, SOOD AK, LOREE JM, GRESELE P, HONN KV. Platelet "first responders" in wound response, cancer, and metastasis[J]. Cancer and Metastasis Reviews, 2017, 36(2):199-213.
    [71] RUSSO A, RUSSANO M, FRANCHINA T, MIGLIORINO MR, APRILE G, MANSUETO G, BERRUTI A, FALCONE A, AIETA M, GELIBTER A, RUSSO A, BARNI S, MAIO M, MARTELLI O, PANTANO F, IACONO D, CALVETTI L, QUADRINI S, ROCA E, VASILE E, et al. Neutrophil-to- lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and outcomes with nivolumab in pretreated non-small cell lung cancer (NSCLC):a large retrospective multicenter study[J]. Advances in Therapy, 2020, 37(3):1145-1155.
    [72] KHATTAK MA, REID A, FREEMAN J, PEREIRA M, MCEVOY A, LO J, FRANK MH, MENIAWY T, DIDAN AL, SPENCER I, AMANUEL B, MILLWARD M, ZIMAN M, GRAY E. PD-L1 expression on circulating tumor cells may be predictive of response to pembrolizumab in advanced melanoma:results from a pilot study[J]. The Oncologist, 2020, 25(3):e520-e527.
    [73] ROSALES C. Neutrophil:a cell with many roles in inflammation or several cell types?[J]. Frontiers in Physiology, 2018, 9:113.
    [74] KITANO S, POSTOW MA, ZIEGLER CGK, KUK D, PANAGEAS KS, CORTEZ C, RASALAN T, ADAMOW M, YUAN JD, WONG P, ALTAN- BONNET G, WOLCHOK JD, LESOKHIN AM. Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes[J]. Cancer Immunology Research, 2014, 2(8):812-821.
    [75] PASSARO A, MANCUSO P, GANDINI S, SPITALERI G, LABANCA V, GUERINI-ROCCO E, BARBERIS M, CATANIA C, DEL SIGNORE E, de MARINIS F, BERTOLINI F. Gr-MDSC-linked asset as a potential immune biomarker in pretreated NSCLC receiving nivolumab as second-line therapy[J]. Clinical and Translational Oncology, 2020, 22(4):603-611.
    [76] DIEM S, KASENDA B, SPAIN L, MARTIN- LIBERAL J, MARCONCINI R, GORE M, LARKIN J. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma[J]. British Journal of Cancer, 2016, 114(3):256-261.
    [77] ZHANG ZB, LI Y, YAN X, SONG Q, WANG GQ, HU Y, JIAO SC, WANG JL. Pretreatment lactate dehydrogenase may predict outcome of advanced non small-cell lung cancer patients treated with immune checkpoint inhibitors:a meta-analysis[J]. Cancer Medicine, 2019, 8(4):1467-1473.
    [78] KAUR S, BANSAL Y, KUMAR R, BANSAL G. A panoramic review of IL-6:structure, pathophysiological roles and inhibitors[J]. Bioorganic & Medicinal Chemistry, 2020, 28(5):115327.
    [79] KEEGAN A, RICCIUTI B, GARDEN P, COHEN L, NISHIHARA R, ADENI A, PAWELETZ C, SUPPLEE J, JÄNNE PA, SEVERGNINI M, AWAD MM, WALT DR. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC[J]. Journal for Immunotherapy of Cancer, 2020, 8(2):e000678.
    [80] KANG DH, PARK CK, CHUNG C, OH IJ, KIM YC, PARK D, KIM J, KWON GC, KWON I, SUN P, SHIN EC, LEE JE. Baseline serum interleukin-6 levels predict the response of patients with advanced non-small cell lung cancer to PD-1/PD-L1 inhibitors[J]. Immune Network, 2020, 20(3):e27.
    [81] YUEN KC, LIU LF, GUPTA V, MADIREDDI S, KEERTHIVASAN S, LI CF, RISHIPATHAK D, WILLIAMS P, KADEL EE, KOEPPEN H, CHEN YJ, MODRUSAN Z, GROGAN JL, BANCHEREAU R, LENG N, THASTROM A, SHEN XD, HASHIMOTO K, TAYAMA D, van der HEIJDEN MS, et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade[J]. Nature Medicine, 2020, 26(5):693-698.
    [82] BAKOUNY Z, CHOUEIRI TK. IL-8 and cancer prognosis on immunotherapy[J]. Nature Medicine, 2020, 26(5):650-651.
    [83] INFANGER DW, CHO Y, LOPEZ BS, MOHANAN S, LIU SC, GURSEL D, BOOCKVAR JA, FISCHBACH C. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche[J]. Cancer Research, 2013, 73(23):7079-7089.
    [84] BELLMUNT J, GONZÁLEZ-LARRIBA JL, PRIOR C, MAROTO P, CARLES J, CASTELLANO D, MELLADO B, GALLARDO E, PEREZ-GRACIA JL, AGUILAR G, VILLANUEVA X, ALBANELL J, CALVO A. Phase II study of sunitinib as first-line treatment of urothelial cancer patients ineligible to receive cisplatin-based chemotherapy:baseline interleukin-8 and tumor contrast enhancement as potential predictive factors of activity[J]. Annals of Oncology, 2011, 22(12):2646-2653.
    [85] SANMAMED MF, PEREZ-GRACIA JL, SCHALPER KA, FUSCO JP, GONZALEZ A, RODRIGUEZ-RUIZ ME, OÑATE C, PEREZ G, ALFARO C, MARTÍN-ALGARRA S, ANDUEZA MP, GURPIDE A, MORGADO M, WANG J, BACCHIOCCHI A, HALABAN R, KLUGER H, CHEN L, SZNOL M, MELERO I. Changes in serum interleukin-8(IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients[J]. Annals of Oncology, 2017, 28(8):1988-1995.
    [86] ABBOSH C, BIRKBAK NJ, WILSON GA, JAMAL-HANJANI M, CONSTANTIN T, SALARI R, le QUESNE J, MOORE DA, VEERIAH S, ROSENTHAL R, MARAFIOTI T, KIRKIZLAR E, WATKINS TBK, MCGRANAHAN N, WARD S, MARTINSON L, RILEY J, FRAIOLI F, al BAKIR M, GRÖNROOS E, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution[J]. Nature, 2017, 545(7655):446-451.
    [87] RICCIUTI B, JONES G, SEVERGNINI M, ALESSI JV, RECONDO G, LAWRENCE M, FORSHEW T, LYDON C, NISHINO M, CHENG M, AWAD M. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC)[J]. Journal for Immunotherapy of Cancer, 2021, 9(3):e001504.
    [88] LEE JH, LONG GV, BOYD S, LO S, MENZIES AM, TEMBE V, GUMINSKI A, JAKROT V, SCOLYER RA, MANN GJ, KEFFORD RF, CARLINO MS, RIZOS H. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma[J]. Annals of Oncology:Official Journal of the European Society for Medical Oncology, 2017, 28(5):1130-1136.
    [89] ESQUELA-KERSCHER A, SLACK FJ. Oncomirs— microRNAs with a role in cancer[J]. Nature Reviews Cancer, 2006, 6(4):259-269.
    [90] NGUYEN MH T, LUO YH, LI AL, TSAI JC, WU KL, CHUNG PJ, MA NH. miRNA as a modulator of immunotherapy and immune response in melanoma[J]. Biomolecules, 2021, 11(11):1648.
    [91] HUBER V, VALLACCHI V, FLEMING V, HU XY, COVA A, DUGO M, SHAHAJ E, SULSENTI R, VERGANI E, FILIPAZZI P, de LAURENTIIS A, LALLI L, GUARDO LD, PATUZZO R, VERGANI B, CASIRAGHI E, COSSA M, GUALENI A, BOLLATI V, ARIENTI F, et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma[J]. The Journal of Clinical Investigation, 2018, 128(12):5505-5516.
    [92] RAJAGOPALA SV, VASHEE S, OLDFIELD LM, SUZUKI Y, VENTER JC, TELENTI A, NELSON KE. The human microbiome and cancer[J]. Cancer Prevention Research:Philadelphia, Pa, 2017, 10(4):226-234.
    [93] ECKBURG PB, BIK EM, BERNSTEIN CN, PURDOM E, DETHLEFSEN L, SARGENT M, GILL SR, NELSON KE, RELMAN DA. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638.
    [94] ROUTY B, le CHATELIER E, DEROSA L, DUONG CPM, ALOU MT, DAILLÈRE R, FLUCKIGER A, MESSAOUDENE M, RAUBER C, ROBERTI MP, FIDELLE M, FLAMENT C, POIRIER-COLAME V, OPOLON P, KLEIN C, IRIBARREN K, MONDRAGÓN L, JACQUELOT N, QU B, FERRERE G, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97.
    [95] CHAPUT N, LEPAGE P, COUTZAC C, SOULARUE E, le ROUX K, MONOT C, BOSELLI L, ROUTIER E, CASSARD L, COLLINS M, VAYSSE T, MARTHEY L, EGGERMONT A, ASVATOURIAN V, LANOY E, MATEUS C, ROBERT C, CARBONNEL F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab[J]. Annals of Oncology, 2017, 28(6):1368-1379.
    [96] SIVAN A, CORRALES L, HUBERT N, WILLIAMS JB, AQUINO-MICHAELS K, EARLEY ZM, BENYAMIN FW, LEI YM, JABRI B, ALEGRE ML, CHANG EB, GAJEWSKI TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy[J]. Science, 2015, 350(6264):1084-1089.
    [97] ABED A, CALAPRE L, LO J, CORREIA S, BOWYER S, CHOPRA A, WATSON M, KHATTAK MA, MILLWARD M, GRAY ES. Prognostic value of HLA-I homozygosity in patients with non-small cell lung cancer treated with single agent immunotherapy[J]. Journal for Immunotherapy of Cancer, 2020, 8(2):e001620.
    [98] WANG L, ZHU YR, ZHANG B, WANG X, MO HN, JIAO YC, XU JC, HUANG J. Prognostic and predictive impact of neutrophil-to-lymphocyte ratio and HLA-I genotyping in advanced esophageal squamous cell carcinoma patients receiving immune checkpoint inhibitor monotherapy[J]. Thoracic Cancer, 2022, 13(11):1631-1641.
    [99] ALTHAMMER S, TAN TH, SPITZMÜLLER A, ROGNONI L, WIESTLER T, HERZ T, WIDMAIER M, REBELATTO MC, KAPLON H, DAMOTTE D, ALIFANO M, HAMMOND SA, DIEU-NOSJEAN MC, RANADE K, SCHMIDT G, HIGGS BW, STEELE KE. Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy[J]. Journal for Immunotherapy of Cancer, 2019, 7(1):121.
    [100] CRISTESCU R, MOGG R, AYERS M, ALBRIGHT A, MURPHY E, YEARLEY J, SHER X, LIU XQ, LU HC, NEBOZHYN M, ZHANG CS, LUNCEFORD JK, JOE A, CHENG J, WEBBER AL, IBRAHIM N, PLIMACK ER, OTT PA, SEIWERT TY, RIBAS A, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy[J]. Science, 2018, 362(6411):eaar3593.
    [101] YU YF, ZENG DQ, OU QY, LIU SB, LI AL, CHEN YJ, LIN DG, GAO QL, ZHOU HY, LIAO WJ, YAO HR. Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer:a meta-analysis and individual patient-level analysis[J]. JAMA Network Open, 2019, 2(7):e196879.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭蕊,李小宁,郝明炫,梁有沣,王磊,杨昭. 用于肿瘤治疗的免疫检查点抑制剂相关预测生物标志物的研究进展[J]. 生物工程学报, 2023, 39(4): 1403-1424

复制
分享
文章指标
  • 点击次数:324
  • 下载次数: 1253
  • HTML阅读次数: 1232
  • 引用次数: 0
历史
  • 收稿日期:2022-08-16
  • 录用日期:2022-10-25
  • 在线发布日期: 2023-04-14
  • 出版日期: 2023-04-25
文章二维码
您是第6020023位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司