植物乳杆菌谷氨酸脱羧酶催化pH范围的理性改造及高效转化生产g-氨基丁酸
作者:
基金项目:

国家重点研发计划(2021YFC2100900);国家自然科学基金(32071470)


Efficient biosynthesis of γ-aminobutyric acid by rationally engineering the catalytic pH range of a glutamate decarboxylase from Lactobacillus plantarum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    γ-氨基丁酸可由谷氨酸脱羧酶(glutamate decarboxylase, GAD)催化谷氨酸一步合成,反应体系成分简单、环境友好。然而,绝大多数GAD酶催化pH偏酸性且反应范围狭小,需要加入无机盐维持最适催化环境,增加了生产附加成分。此外,随着产物γ-氨基丁酸的生成,溶液pH会逐渐上升,不利于GAD酶的持续转化。本研究首先从实验室保藏的一株高产γ-氨基丁酸的植物乳杆菌(Lactobacillus plantarum)中克隆得到谷氨酸脱羧酶LpGAD,基于酶蛋白表面电荷修饰,选择9个位点进行定点突变及组合突变,酶学性质表征结果显示三突变体LpGADS24R/D88R/Y309K在催化pH区间内酶活力整体提高,尤其拓宽了在偏中性pH 6.0下的酶活,为野生酶的1.68倍。接下来,通过分子动力学模拟解析了酶活提高的机理。此外,将LpgadLpgadS24R/D88R/Y309K突变基因分别在谷氨酸棒杆菌(Corynebacterium glutamicum) E01中过表达,通过优化确定了摇瓶最适转化条件为反应温度40 ℃,菌体量OD600=20,底物L-谷氨酸100.0 g/L,5-磷酸吡哆醛添加量为100 μmol/L。5 L发酵罐中,不调节pH,通过分批投料底物L-谷氨酸,γ-氨基丁酸产量高达402.8 g/L,较对照菌株提高了1.63倍。本研究成功拓宽了LpGAD的pH催化范围及酶活,提高了γ氨基丁酸的转化效率,为实现其规模化工业生产奠定了基础。

    Abstract:

    γ-aminobutyric acid can be produced by a one-step enzymatic reaction catalyzed by glutamic acid decarboxylase. The reaction system is simple and environmentally friendly. However, the majority of GAD enzymes catalyze the reaction under acidic pH at a relatively narrow range. Thus, inorganic salts are usually needed to maintain the optimal catalytic environment, which adds additional components to the reaction system. In addition, the pH of solution will gradually rise along with the production of γ-aminobutyric acid, which is not conducive for GAD to function continuously. In this study, we cloned the glutamate decarboxylase LpGAD from a Lactobacillus plantarum capable of efficiently producing γ-aminobutyric acid, and rationally engineered the catalytic pH range of LpGAD based on surface charge. A triple point mutant LpGADS24R/D88R/Y309K was obtained from different combinations of 9 point mutations. The enzyme activity at pH 6.0 was 1.68 times of that of the wild type, suggesting the catalytic pH range of the mutant was widened, and the possible mechanism underpinning this increase was discussed through kinetic simulation. Furthermore, we overexpressed the Lpgad and LpgadS24R/D88R/Y309K genes in Corynebacterium glutamicum E01 and optimized the transformation conditions. An optimized whole cell transformation process was conducted under 40 ℃, cell mass (OD600) 20, 100 g/L l-glutamic acid substrate and 100 μmol/L pyridoxal 5-phosphate. The γ-aminobutyric acid titer of the recombinant strain reached 402.8 g/L in a fed-batch reaction carried out in a 5 L fermenter without adjusting pH, which was 1.63 times higher than that of the control. This study expanded the catalytic pH range of and increased the enzyme activity of LpGAD. The improved production efficiency of γ-aminobutyric acid may facilitate its large-scale production.

    参考文献
    [1] HONG J, KIM KJ. Crystal structure of γ-aminobutyrate aminotransferase in complex with a PLP-GABA adduct from Corynebacterium glutamicum[J]. Biochemical and Biophysical Research Communications, 2019, 514(3): 601-606.
    [2] GRAMAZIO P, TAKAYAMA M, EZURA H. Challenges and prospects of new plant breeding techniques for GABA improvement in crops: tomato as an example[J]. Frontiers in Plant Science, 2020, 11: 577980.
    [3] LEÓN I, PEÑA I, CABEZAS C, ALONSO ER, ALONSO JL. The last link of the x-aminobutyric acid series: the five conformers of β-aminobutyric acid[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15574-15580.
    [4] SARASA SB, MAHENDRAN R, MUTHUSAMY G, THANKAPPAN B, SELTA DRF, ANGAYARKANNI J. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes[J]. Current Microbiology, 2020, 77(4): 534-544.
    [5] GREWAL J, KHARE SK. 2-pyrrolidone synthesis from γ-aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake[J]. Bioprocess and Biosystems Engineering, 2017, 40(1): 145-152.
    [6] WU QL, SHAH NP. High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(17): 3661-3672.
    [7] BARITUGO KA, KIM HT, DAVID Y, KHANG TU, HYUN SM, KANG KH, YU JH, CHOI JH, SONG JJ, JOO JC, PARK SJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution[J]. Microbial Cell Factories, 2018, 17(1): 1-12.
    [8] LUO HZ, LIU Z, XIE F, BILAL M, LIU LN, YANG RL, WANG ZY. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives[J]. Critical Reviews in Biotechnology, 2021, 41(4): 491-512.
    [9] PHAM VD, LEE SH, PARK SJ, HONG SH. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli[J]. Journal of Biotechnology, 2015, 207: 52-57.
    [10] ZHANG Y, ZHAO J, WANG XL, TANG Y, LIU SW, WEN TY. Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in Corynebacterium glutamicum ATCC 13032[J]. Biology, 2022, 11(6): 846.
    [11] HUANG J, MEI LH, XIA J. Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA[J]. Biotechnology and Bioengineering, 2007, 96(5): 924-931.
    [12] GONG LC, REN C, XU Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis[J]. Applied and Environmental Microbiology, 2020, 86(7): e02615-19.
    [13] HUANG Y, SU LQ, WU J. Pyridoxine supplementation improves the activity of recombinant glutamate decarboxylase and the enzymatic production of gama-aminobutyric acid[J]. PLoS One, 2016, 11(7): e0157466.
    [14] JIANG DH, CAI QM, GAO AT, LI J, YANG Y, XU XB, YE Y, HOU JH. Cloning and expression of a full-length glutamate decarboxylase gene from a high-yielding γ-aminobutyric acid yeast strain MJ2[J]. Annals of Microbiology, 2013, 63(2): 487-494.
    [15] CUI YH, MIAO K, NIYAPHORN S, QU XJ. Production of gamma-aminobutyric acid from lactic acid bacteria: a systematic review[J]. International Journal of Molecular Sciences, 2020, 21(3): 995.
    [16] KOOK MC, SEO MJ, CHEIGH CI, PYUN YR, CHO SC, PARK H. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16[J]. Journal of Microbiology and Biotechnology, 2010, 20(4): 763-766.
    [17] LIU QD, CHENG HJ, MA XQ, XU N, LIU J, MA YH. Expression, characterization and mutagenesis of a novel glutamate decarboxylase from Bacillus megaterium[J]. Biotechnology Letters, 2016, 38(7): 1107-1113.
    [18] ZHANG, HU, ZHAO, HUANG, MEI, MEI. Parallel strategy increases the thermostability and activity of glutamate decarboxylase[J]. Molecules, 2020, 25(3): 690.
    [19] 汪钟. 短乳杆菌谷氨酸脱羧酶热稳定性的理性改造[D]. 杭州: 浙江大学硕士学位论文, 2020. WANG Z. Rational modification of thermal stability of Lactobacillus brevis glutamate decarboxylase[D]. Hangzhou: Master’s Thesis of Zhejiang University, 2020 (in Chinese).
    [20] KANG TJ, HO NA, HACK SP. Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli[J]. Enzyme and Microbial Technology, 2013, 53(3): 200-205.
    [21] SHI F, XIE Y, JIANG J, WANG N, LI Y, WANG X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH[J]. Enzyme and Microbial Technology, 2014, 61/62: 35-43.
    [22] SHIN SM, KIM H, JOO Y, LEE SJ, LEE YJ, LEE SJ, LEE DW. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity[J]. Journal of Agricultural and Food Chemistry, 2014, 62(50): 12186-12193.
    [23] ZHANG RZ, YANG TW, RAO ZM, SUN HM, XU MJ, ZHANG X, XU ZH, YANG ST. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum[J]. Green Chemistry, 2014, 16(9): 4190-4197.
    [24] 饶志明, 韩瑾, 杨套伟, 徐美娟, 张显. 一种pH耐受性提高的谷氨酸脱羧酶突变体及其在γ-氨基丁酸合成中的应用: CN114525268A[P]. 2022-05-24. RAO ZM, HAN J, YANG TW, XU MJ, ZHANG X. Glutamate decarboxylase mutant with improved pH tolerance and application thereof in synthesis of gamma-aminobutyric acid: CN114525268A[P]. 2022-05-24 (in Chinese).
    [25] 乔郅钠, 徐美娟, 龙梦飞, 杨套伟, 张显, 中西秀树, 饶志明. TCA循环关键节点对l-谷氨酸合成的影响[J]. 生物工程学报, 2020, 36(10): 2113-2125. QIAO ZN, XU MJ, LONG MF, YANG TW, ZHANG X, NAKANISHI H, RAO ZM. Effect of key notes of TCA cycle on L-glutamate production[J]. Chinese Journal of Biotechnology, 2020, 36(10): 2113-2125 (in Chinese).
    [26] 余秉琦, 沈微, 诸葛健. 适用于异源DNA高效整合转化的谷氨酸棒杆菌电转化法[J]. 中国生物工程杂志, 2005, 25(2): 78-81. YU BQ, SHEN W, ZHUGE J. An improved method for integrative electrotransformation of Corynebacterium glutamicum with xenogeneic DNA[J]. Progress in Biotechnology, 2005, 25(2): 78-81 (in Chinese).
    [27] ZHAO AQ, HU XQ, LI Y, CHEN C, WANG XY. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production[J]. AMB Express, 2016, 6(1): 1-13.
    [28] BRADFORD MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
    [29] WATERHOUSE A, BERTONI M, BIENERT S, STUDER G, TAURIELLO G, GUMIENNY R, HEER FT, de BEER TAP, REMPFER C, BORDOLI L, LEPORE R, SCHWEDE T. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Research, 2018, 46(W1): W296-W303.
    [30] HOOFT RWW, SANDER C, VRIEND G. Objectively judging the quality of a protein structure from a Ramachandran plot[J]. Bioinformatics, 1997, 13(4): 425-430.
    [31] der BS, KLUWE C, MIKLOS AE, JACAK R, LYSKOV S, GRAY JJ, GEORGIOU G, ELLINGTON AD, KUHLMAN B. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability[J]. PLoS One, 2013, 8(5): e64363.
    [32] SALOMON-FERRER R, CASE DA, WALKER RC. An overview of the Amber biomolecular simulation package[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3(2): 198-210.
    [33] SAGUI C, DARDEN TA. Molecular dynamics simulations of biomolecules: long-range electrostatic effects[J]. Annual Review of Biophysics and Biomolecular Structure, 1999, 28: 155-179.
    [34] Kräutler V, van GUNSTEREN WF, Hünenberger PH. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations[J]. Journal of Computational Chemistry, 2001, 22(5): 501-508.
    [35] LARINI L, MANNELLA R, LEPORINI D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms[J]. The Journal of Chemical Physics, 2007, 126(10): 104101.
    [36] KHERSONSKY O, LIPSH R, AVIZEMER Z, ASHANI Y, GOLDSMITH M, LEADER H, DYM O, ROGOTNER S, TRUDEAU DL, PRILUSKY J, AMENGUAL-RIGO P, GUALLAR V, TAWFIK DS, FLEISHMAN SJ. Automated design of efficient and functionally diverse enzyme repertoires[J]. Molecular Cell, 2018, 72(1): 178-186.e5.
    [37] Wen JB, Bao J. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum[J]. Journal of Biotechnology, 2021, 331: 19-25.
    [38] KE CR, WEI J, REN Y, YANG XW, CHEN J, HUANG JZ. Efficient gamma-aminobutyric acid bioconversion by engineered Escherichia coli[J]. Biotechnology & Biotechnological Equipment, 2018, 32(3): 1-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖杰文,韩瑾,乔郅钠,张国栋,黄武军,钱凯,徐美娟,张显,杨套伟,饶志明. 植物乳杆菌谷氨酸脱羧酶催化pH范围的理性改造及高效转化生产g-氨基丁酸[J]. 生物工程学报, 2023, 39(6): 2108-2125

复制
分享
文章指标
  • 点击次数:648
  • 下载次数: 1559
  • HTML阅读次数: 1093
  • 引用次数: 0
历史
  • 收稿日期:2022-12-16
  • 录用日期:2023-03-29
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6015494位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司