脱落酸生物合成研究进展
作者:
基金项目:

国家自然科学基金(22178261)


Advances in abscisic acid biosynthesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脱落酸作为一种抑制生长的植物激素,是平衡植物内源激素和调节生长代谢的关键因子。脱落酸具有提高作物抗旱耐盐、减少果实褐变的作用,同时可降低疟疾发病率、刺激胰岛素分泌,因此在农业和医药领域有着广阔的应用前景。相较于传统的植物提取法和化学合成法,利用微生物合成脱落酸是一种经济、可持续的来源方式。目前利用天然微生物如灰葡萄孢霉菌、蔷薇色尾孢菌等合成脱落酸的研究已经取得了诸多进展,而脱落酸的异源微生物合成研究相对较少。酿酒酵母、解脂耶氏酵母、大肠杆菌等工程菌株作为天然产物异源合成的常用宿主,具有遗传背景清晰、易于操作、便于工业化生产等优势,因此利用微生物异源合成脱落酸是一种更具潜力的生产方式。本文着重从底盘细胞的选择、关键酶的筛选与表达强化、辅因子的调节、增强前体供应及促进脱落酸外排5个方面对微生物异源合成脱落酸的研究进行综述。最后,对该领域的未来发展方向进行了展望。

    Abstract:

    Abscisic acid, a plant hormone that inhibits growth, is a key factor in balancing plant endogenous hormones and regulating growth and metabolism. Abscisic acid can improve the drought resistance and salt tolerance of crops, reduce fruit browning, reduce the incidence rate of malaria and stimulate insulin secretion, so it has a broad application potential in agriculture and medicine. Compared with traditional plant extraction and chemical synthesis, abscisic acid synthesis by microorganisms is an economic and sustainable route. At present, a lot of progress has been made in the synthesis of abscisic acid by natural microorganisms such as Botrytis cinerea and Cercospora rosea, while the research on the synthesis of abscisic acid by engineered microorganisms is rarely reported. Saccharomyces cerevisiae, Yarrowia lipolytica and Escherichia coli are common hosts for heterologous synthesis of natural products due to their advantages of clear genetic background, easy operation and friendliness for industrial production. Therefore, the heterologous synthesis of abscisic acid by microorganisms is a more promising production method. The author reviews the research on the heterologous synthesis of abscisic acid by microorganisms from five aspects: selection of chassis cells, screening and expression enhancement of key enzymes, regulation of cofactors, enhancement of precursor supply and promotion of abscisic acid efflux. Finally, the future development direction of this field is prospected.

    参考文献
    [1] KARL D. The discovery of abscisic acid: a retrospect[J]. Journal of Plant Growth Regulation, 2015, 34(4): 795-808.
    [2] SAH SK, REDDY KR, LI JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontiers in Plant Science, 2016, 7: 571.
    [3] 项洪涛, 李琬, 何宁, 王雪扬, 曹大为, 曹良子, 唐晓东, 李一丹. 外源脱落酸(ABA)调节植物抗旱机制的研究进展[J/OL]. 东北农业科学, 2022, 47(5): 37-41. XIANG HT, LI W, HE N, WANG XY, CAO DW, CAO LZ, TANG XD, LI YD. Research progress on exogenous abscisic acid (ABA) regulating plant drought resistance[J/OL]. Journal of Northeast Agricultural Sciences, 2022, 47(5): 37-41 (in Chinese).
    [4] AHANGER MA, SIDDIQUE KHM, AHMAD P. Understanding drought tolerance in plants[J]. Physiologia Plantarum, 2021, 172(2): 286-288.
    [5] GÓMEZ-CADENAS A, ARBONA V, JACAS J, PRIMO-MILLO E, TALON M. Abscisic acid reduces leaf abscission and increases salt tolerance in Citrus plants[J]. Journal of Plant Growth Regulation, 2002, 21(3): 234-240.
    [6] ZHANG Q, LIU YL, HE CC, ZHU SJ. Postharvest exogenous application of abscisic acid reduces internal browning in pineapple[J]. Journal of Agricultural and Food Chemistry, 2015, 63(22): 5313-5320.
    [7] CHEN TT, LI GY, ISLAM MR, FU WM, FENG BH, TAO LX, FU GF. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship[J]. BMC Plant Biology, 2019, 19(1): 525.
    [8] BOOZ V, CHRISTIANSEN CB, KUHRE RE, SALTIEL MY, SOCIALI G, SCHALTENBERG N, FISCHER AW, HEEREN J, ZOCCHI E, HOLST JJ, BRUZZONE S. Abscisic acid stimulates the release of insulin and of GLP-1 in the rat perfused pancreas and intestine[J]. Diabetes/Metabolism Research and Reviews, 2019, 35(2): e3102.
    [9] GURI AJ, HONTECILLAS R, BASSAGANYA- RIERA J. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration[J]. Clinical Nutrition, 2010, 29(6): 824-831.
    [10] GLENNON EKK, ADAMS LG, HICKS DR, DEHESH K, LUCKHART S. Supplementation with abscisic acid reduces malaria disease severity and parasite transmission[J]. The American Journal of Tropical Medicine and Hygiene, 2016, 94(6): 1266-1275.
    [11] DARMA R, LUTZ A, ELLIOTT CE, IDNURM A. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans[J]. Fungal Genetics and Biology, 2019, 130: 62-71.
    [12] PAN W, LU Q, XU QR, ZHANG RR, LI HY, YANG YH, LIU HJ, DU ST. Abscisic acid-generating bacteria can reduce Cd concentration in pakchoi grown in Cd-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 177: 100-107.
    [13] NAGAMUNE K, HICKS LM, FUX B, BROSSIER F, CHINI EN, SIBLEY LD. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii[J]. Nature, 2008, 451(7175): 207-210.
    [14] 万小荣, 李玲. 高等植物脱落酸生物合成途径及其酶调控[J]. 植物学通报, 2004, 21(3): 352-359. WAN XR, LI L. Pathways and related enzymes of ABA biosynthesis in higher plants[J]. Chinese Bulletin of Botany, 2004, 21(3): 352-359 (in Chinese).
    [15] INOMATA M, HIRAI N, YOSHIDA R, OHIGASHI H. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea[J]. Phytochemistry, 2004, 65(19): 2667-2678.
    [16] FINKELSTEIN R. Abscisic acid synthesis and response[J]. The Arabidopsis Book, 2013, 11: e0166.
    [17] 杨秋玲, 季静, 王罡, 关春峰. 类胡萝卜素合成途径终产物脱落酸的合成调控与生物学效应[J]. 天津农业科学, 2011, 17(5): 24-27. YANG QL, JI J, WANG G, GUAN CF. Regulation and biological effects of end-product abscisic acid of carotenoid biosynthetic pathway[J]. Tianjin Agricultural Sciences, 2011, 17(5): 24-27 (in Chinese).
    [18] HIEBER AD, BUGOS RC, YAMAMOTO HY. Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase[J]. Biochimica et Biophysica Acta: BBA-Protein Structure and Molecular Enzymology, 2000, 1482(1/2): 84-91.
    [19] SIMIONATO D, BASSO S, ZAFFAGNINI M, LANA T, MARZOTTO F, TROST P, MOROSINOTTO T. Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase[J]. FEBS Lett, 2015, 589(8): 919-923.
    [20] NEUMAN H, GALPAZ N, CUNNINGHAM FX Jr, ZAMIR D, HIRSCHBERG J. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis[J]. The Plant Journal: for Cell and Molecular Biology, 2014, 78(1): 80-93.
    [21] NURBEKOVA Z, SRIVASTAVA S, STANDING D, KURMANBAYEVA A, BEKTUROVA A, SOLTABAYEVA A, OSHANOVA D, TURECKOVA V, STRAND M, BISWAS MS, MANO J, SAGI M. Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity[J]. The Plant Journal: for Cell and Molecular Biology, 2021, 108(5): 1439-1455.
    [22] GONZÁLEZ-GUZMÁN M, APOSTOLOVA N, BELLÉS JM, BARRERO JM, PIQUERAS P, PONCE MR, MICOL JL, SERRANO R, RODRÍGUEZ PL. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde[J]. The Plant Cell, 2002, 14(8): 1833-1846.
    [23] WU J, KAMANGA BM, ZHANG WY, XU YH, XU L. Research progress of aldehyde oxidases in plants[J]. PeerJ, 2022, 10: e13119.
    [24] YAMAMOTO H, INOMATA M, TSUCHIYA S, NAKAMURA M, ORITANI T. Metabolism of chiral ionylideneacetic acids on the abscisic acid biosynthetic pathway in Cercospora[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(12): 2644-2650.
    [25] 莫才清, 周俊初. 真菌中脱落酸的代谢及定量分析技术[J]. 氨基酸和生物资源, 1996, 18(1): 44-48. MO CQ, ZHOU JC. Metabolism of abscisic acid in fungi and its quantitative analysis methods[J]. Amino Acids & Biotic Resources, 1996, 18(1): 44-48 (in Chinese).
    [26] TAKINO J, KOZAKI T, SATO Y, LIU CW, OZAKI T, MINAMI A, OIKAWA H. Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase[J]. Journal of the American Chemical Society, 2018, 140(39): 12392-12395.
    [27] TAKINO J, KOZAKI T, OZAKI T, LIU CW, MINAMI A, OIKAWA H. Elucidation of biosynthetic pathway of a plant hormone abscisic acid in phytopathogenic fungi[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(9): 1642-1649.
    [28] INOMATA M, HIRAI N, YOSHIDA R, OHIGASHI H. Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(12): 2571-2580.
    [29] SIEWERS V, SMEDSGAARD J, TUDZYNSKI P. The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea[J]. Applied and Environmental Microbiology, 2004, 70(7): 3868-3876.
    [30] COUSO I, CORDERO BF, VARGAS MÁ, RODRÍGUEZ H. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis[J]. Marine Drugs, 2012, 10(9): 1955-1976.
    [31] EILERS U, DIETZEL L, BREITENBACH J, BÜCHEL C, SANDMANN G. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum[J]. Journal of Plant Physiology, 2016, 192: 64-70.
    [32] CHERNYS JT, ZEEVAART JAD. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado[J]. Plant Physiology, 2000, 124(1): 343-354.
    [33] HU B, HONG L, LIU X, LI L, LUO GY. Comparative study of the tissue-specific distribution of ABA from Arachis hypogaea L. and expression of the 9-cis epoxycarotenoid dioxygenase 1 (AhNCED1) during plant development[J]. Biotechnology & Biotechnological Equipment, 2012, 26(5): 3201-3205.
    [34] GAN ZY, SHAN N, FEI LY, WAN CP, CHEN JY. Isolation of the 9-cis-epoxycarotenoid dioxygenase (NCED) gene from kiwifruit and its effects on postharvest softening and ripening[J]. Scientia Horticulturae, 2020, 261: 109020.
    [35] SIEWERS V, KOKKELINK L, SMEDSGAARD J, TUDZYNSKI P. Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea[J]. Applied and Environmental Microbiology, 2006, 72(7): 4619-4626.
    [36] PASTENES C, PIMENTEL P, LILLO J. Leaf movements and photoinhibition in relation to water stress in field-grown beans[J]. Journal of Experimental Botany, 2005, 56(411): 425-433.
    [37] YAMAMOTO HY, NAKAYAMA TOM, CHICHESTER CO. Studies on the light and dark interconversions of leaf xanthophylls[J]. Archives of Biochemistry and Biophysics, 1962, 97(1): 168-173.
    [38] MARIN E, NUSSAUME L, QUESADA A, GONNEAU M, SOTTA B, HUGUENEY P, FREY A, MARION-POLL A. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. The EMBO Journal, 1996, 15(10): 2331-2342.
    [39] YAO YX, JIA L, CHENG Y, RUAN MY, YE QJ, WANG RQ, YAO ZP, ZHOU GZ, LIU J, YU JH, ZHANG P, YIN YH, DIAO WP, WAN HJ. Evolutionary origin of the carotenoid cleavage oxygenase family in plants and expression of pepper genes in response to abiotic stresses[J]. Frontiers in Plant Science, 2022, 12: 792832.
    [40] DARUWALLA A, KISER PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs)[J]. Biochimica et Biophysica Acta: BBA- Molecular and Cell Biology of Lipids, 2020, 1865(11): 158590.
    [41] TAN BC, SCHWARTZ SH, ZEEVAART JA, MCCARTY DR. Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(22): 12235-12240.
    [42] QI KJ, WU X, XIE ZH, SUN XJ, GU C, TAO ST, ZHANG SL. Seed coat removal in pear accelerates embryo germination by down- regulating key genes in ABA biosynthesis[J]. The Journal of Horticultural Science and Biotechnology, 2019, 94(6): 718-725.
    [43] LIANG JH, YANG LX, CHEN X, LI L, GUO DL, LI HH, ZHANG BY. Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L.[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(9): 2103-2106.
    [44] HUANG Y, GUO YM, LIU YT, ZHANG F, WANG ZK, WANG HY, WANG F, LI DP, MAO DD, LUAN S, LIANG MZ, CHEN LB. 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice[J]. Frontiers in Plant Science, 2018, 9: 162.
    [45] DAMBEK M, EILERS U, BREITENBACH J, STEIGER S, BUCHEL C, SANDMANN G. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum[J]. Journal of Experimental Botany, 2012, 63(15): 5607-5612.
    [46] MAMAEV D, ZVYAGILSKAYA R. Yarrowia lipolytica: a multitalented yeast species of ecological significance[J]. FEMS Yeast Research, 2021, 21(2): foab008.
    [47] 张金宏, 崔志勇, 祁庆生, 侯进. 解脂耶氏酵母表达调控工具的开发及天然产物合成的研究进展[J]. 生物工程学报, 2022, 38(2): 478-505. ZHANG JH, CUI ZY, QI QS, HOU J. The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica[J]. Chinese Journal of Biotechnology, 2022, 38(2): 478-505 (in Chinese).
    [48] ARNESEN JA, JACOBSEN IH, DYEKJÆR JD, RAGO D, KRISTENSEN M, KLITGAARD AK, RANDELOVIC M, MARTINEZ JL, BORODINA I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica[J]. FEMS Yeast Research, 2022, 22(1): foac015.
    [49] CATALDO VF, ARENAS N, SALGADO V, CAMILO C, LBANEZ F, AGOSIN E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2020, 59: 53-63.
    [50] 谭红, 周金燕, 钟娟, 杨杰,肖亮. 一种高效制备天然脱落酸的方法: CN102399827B[P]. 2013-06-05. TAN H, ZHOU JY, ZHONG J, YANG J, XIAO L. An efficient method for preparing natural abscisic acid: CN102399827B[P]. 2013-06-05 (in Chinese).
    [51] DING ZT, ZHANG Z, ZHONG J, LUO D, ZHOU JY, YANG J, XIAO L, SHU D, TAN H. Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6[J]. Scientific Reports, 2016, 6: 37487.
    [52] OTTO M, TEIXEIRA PG, VIZCAINO MI, DAVID F, SIEWERS V. Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid[J]. Microbial Cell Factories, 2019, 18(1): 205.
    [53] TAKEMURA M, KUBO A, HIGUCHI Y, MAOKA T, SAHARA T, YAOI K, OHDAN K, UMENO D, MISAWA N. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2019, 103(23): 9393-9399.
    [54] BÜCH K, STRANSKY H, HAGER A. FAD is a further essential cofactor of the NAD(P)H and O2-dependent zeaxanthin-epoxidase[J]. FEBS Letters, 1995, 376(1/2): 45-48.
    [55] VERRIER PJ, BIRD D, BURLA B, DASSA E, FORESTIER C, GEISLER M, KLEIN M, KOLUKISAOGLU U, LEE Y, MARTINOIA E, MURPHY A, REA PA, SAMUELS L, SCHULZ B, SPALDING EJ, YAZAKI K, THEODOULOU FL. Plant ABC proteins-a unified nomenclature and updated inventory[J]. Trends in Plant Science, 2008, 13(4): 151-159.
    [56] KUROMORI T, MIYAJI T, YABUUCHI H, SHIMIZU H, SUGIMOTO E, KAMIYA A, MORIYAMA Y, SHINOZAKI K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2361-2366.
    [57] KANNO Y, HANADA A, CHIBA Y, ICHIKAWA T, NAKAZAWA M, MATSUI M, KOSHIBA T, KAMIYA Y, SEO M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653-9658.
    [58] ZHANG HW, ZHU HF, PAN YJ, YU YX, LUAN S, LI LG. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis[J]. Molecular Plant, 2014, 7(10): 1522-1532.
    [59] YANG WL, LI N, FAN YX, DONG BY, SONG ZH, CAO HY, DU TT, LIU TY, QI M, NIU LL, MENG D, YANG Q, FU YJ. Transcriptome analysis reveals abscisic acid enhancing drought resistance by regulating genes related to flavonoid metabolism in pigeon pea[J]. Environmental and Experimental Botany, 2021, 191: 104627.
    [60] GOGOLEVA NE, NIKOLAICHIK YA, ISMAILOV TT, GORSHKOV VY, SAFRONOVA VI, BELIMOV AA, GOGOLEV Y. Complete genome sequence of the abscisic acid-utilizing strain Novosphingobium sp. P6W[J]. 3 Biotech, 2019, 9(3): 94.
    [61] 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. SUN Y, ZHANG T, LV B, LI C. Improvement for fine regulation of microbial cell factory by intracellular biosensors[J]. CIESC Journal, 2022, 73(2): 521-534 (in Chinese).
    [62] KIRST H, KERFELD CA. Bacterial microcompartments: catalysis-enhancing metabolic modules for next generation metabolic and biomedical engineering[J]. BMC Biology, 2019, 17(1): 79.
    [63] PATEL ZM, HUGHES TR. Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms[J]. Genome Biology, 2021, 22(1): 285.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李可心,王颖,姚明东,肖文海. 脱落酸生物合成研究进展[J]. 生物工程学报, 2023, 39(6): 2190-2203

复制
分享
文章指标
  • 点击次数:816
  • 下载次数: 2158
  • HTML阅读次数: 1438
  • 引用次数: 0
历史
  • 收稿日期:2022-07-25
  • 录用日期:2022-11-10
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6002294位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司