圆红冬孢酵母基因编辑及天然产物合成的研究进展
作者:
基金项目:

中央高校基本科研业务费专项资金(2452018314);陕西省自然科学基础研究计划(2020JM-177)


Advances in gene editing and natural product synthesis of Rhodotorula toruloides
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [139]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    圆红冬孢酵母(Rhodotorula toruloides)是一种能够天然合成多种类胡萝卜素和油脂的非模式酵母。该菌能够利用各种廉价原料,耐受甚至同化利用多种有毒木质纤维素水解副产物。目前,该酵母被广泛用于微生物油脂、萜烯类化合物、各种高价值酶、糖醇和聚酮化合物的生产研究。鉴于其广阔的工业应用前景,研究人员对其开展了多维度的理论和技术的探索,包括基因组、转录组、蛋白组、遗传操作平台等。本文着重阐述近年来圆红冬孢酵母的代谢工程和天然产物合成的研究进展,并展望其细胞工厂构建中面临的挑战和可能的应对决策。

    Abstract:

    Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.

    参考文献
    [1] PARK YK, NICAUD JM, LEDESMA-AMARO R. The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications[J]. Trends in Biotechnology, 2018, 36(3): 304-317.
    [2] YAEGASHI J, KIRBY J, ITO M, SUN J, DUTTA T, MIRSIAGHI M, SUNDSTROM ER, RODRIGUEZ A, BAIDOO E, TANJORE D, PRAY T, SALE K, SINGH S, KEASLING JD, SIMMONS BA, SINGER SW, MAGNUSON JK, ARKIN AP, SKERKER JM, GLADDEN JM. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts[J]. Biotechnology for Biofuels, 2017, 10(1): 1-13.
    [3] JONES AD, BOUNDY-MILLS KL, BARLA GF, KUMAR S, UBANWA B, BALAN V. Microbial Lipid Alternatives to Plant Lipids[M]. New York: Springer New York, 2019: 1-32.
    [4] SILLMAN J, NYGREN L, KAHILUOTO H, RUUSKANEN V, TAMMINEN A, BAJAMUNDI C, NAPPA M, WUOKKO M, LINDH T, VAINIKKA P, PITKÄNEN JP, AHOLA J. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: can it reduce land and water use?[J]. Global Food Security, 2019, 22: 25-32.
    [5] STEPHENS E, ROSS IL, KING Z, MUSSGNUG JH, KRUSE O, POSTEN C, BOROWITZKA MA, HANKAMER B. An economic and technical evaluation of microalgal biofuels[J]. Nature Biotechnology, 2010, 28(2): 126-128.
    [6] BUZZINI P, INNOCENTI M, TURCHETTI B, LIBKIND D, van BROOCK M, MULINACCI N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus[J]. Canadian Journal of Microbiology, 2007, 53(8): 1024-1031.
    [7] WANG YN, ZHANG SF, ZHU ZW, SHEN HW, LIN XP, JIN X, JIAO X, ZHAO ZK. Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides[J]. Biotechnology for Biofuels, 2018, 11(1): 1-15.
    [8] WU SG, ZHAO X, SHEN HW, WANG Q, ZHAO ZK. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions[J]. Bioresource Technology, 2011, 102(2): 1803-1807.
    [9] LI Q, KAMAL R, WANG Q, YU X, ZHAO ZK. Lipid production from amino acid wastes by the oleaginous yeast Rhodosporidium toruloides[J]. Energies, 2020, 13(7): 1576.
    [10] SÀNCHEZ I NOGUÉ V, BLACK BA, KRUGER JS, SINGER CA, RAMIREZ KJ, REED ML, CLEVELAND NS, SINGER ER, YI XN, YEAP RY, LINGER JG, BECKHAM GT. Integrated diesel production from lignocellulosic sugarsviaoleaginous yeast[J]. Green Chemistry, 2018, 20(18): 4349-4365.
    [11] LI YH, ZHAO ZB, BAI FW. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture[J]. Enzyme and Microbial Technology, 2007, 41(3): 312-317.
    [12] XU JY, LIU DH. Exploitation of genus Rhodosporidium for microbial lipid production[J]. World Journal of Microbiology and Biotechnology, 2017, 33(3): 1-13.
    [13] ANDRé A, CHATZIFRAGKOU A, DIAMANTOPOULOU P, SARRIS D, PHILIPPOUSSIS A, GALIOTOU- PANAYOTOU M, KOMAITIS M, PAPANIKOLAOU S. Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains[J]. Engineering in Life Sciences, 2009, 9(6): 468-478.
    [14] SINGH G, JAWED A, PAUL D, BANDYOPADHYAY KK, KUMARI A, HAQUE S. Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology[J]. Frontiers in Microbiology, 2016, 7: 1686.
    [15] WU CC, TSAI YY, OHASHI T, MISAKI R, LIMTONG S, FUJIYAMA K. Isolation of a thermotolerant Rhodosporidium toruloides DMKU3- TK16 mutant and its fatty acid profile at high temperature[J]. FEMS Microbiology Letters, 2018, 365(21): fny203.
    [16] WU CC, OHASHI T, MISAKI R, LIMTONG S, FUJIYAMA K. Ethanol and H2O2 stresses enhance lipid production in an oleaginous Rhodotorula toruloides thermotolerant mutant L1-1[J]. FEMS Yeast Research, 2020, 20(4): foaa030.
    [17] ZHU ZW, ZHANG SF, LIU HW, SHEN HW, LIN XP, YANG F, ZHOU YJ, JIN GJ, YE ML, ZOU HF, ZHAO ZK. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides[J]. Nature Communications, 2012, 3(1): 1112.
    [18] CORADETTI ST, PINEL D, GEISELMAN GM, ITO M, MONDO SJ, REILLY MC, CHENG YF, BAUER S, GRIGORIEV IV, GLADDEN JM, SIMMONS BA, BREM RB, ARKIN AP, SKERKER JM. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides[J]. eLife, 2018, 7: e32110.
    [19] TIUKOVA IA, BRANDENBURG J, BLOMQVIST J, SAMPELS S, MIKKELSEN N, SKAUGEN M, ARNTZEN MØ, NIELSEN J, SANDGREN M, KERKHOVEN EJ. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production[J]. Biotechnology for Biofuels, 2019, 12(1): 1-17.
    [20] TIUKOVA IA, PRIGENT S, NIELSEN J, SANDGREN M, KERKHOVEN E. Genome‐scale model of Rhodotorula toruloides metabolism[J]. Biotechnology and Bioengineering, 2019, 116(12): 3396-3408.
    [21] DINH HV, SUTHERS PF, CHAN SHJ, SHEN YH, XIAO TX, DEEWAN A, JAGTAP SS, ZHAO HM, RAO CV, RABINOWITZ JD, MARANAS CD. A comprehensive genome-scale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data[J]. Metabolic Engineering Communications, 2019, 9: e00101.
    [22] KIM J, CORADETTI ST, KIM YM, GAO YQ, YAEGASHI J, ZUCKER JD, MUNOZ N, ZINK EM, BURNUM-JOHNSON KE, BAKER SE, SIMMONS BA, SKERKER JM, GLADDEN JM, MAGNUSON JK. Multi-omics driven metabolic network reconstruction and analysis of lignocellulosic carbon utilization in Rhodosporidium toruloides[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 612832.
    [23] JIAO X, ZHANG Y, LIU XJ, ZHANG Q, ZHANG SF, ZHAO ZK. Developing a CRISPR/Cas9 system for genome editing in the basidiomycetous yeast Rhodosporidium toruloides[J]. Biotechnology Journal, 2019, 14(7): 1900036.
    [24] SUN WY, YANG XB, WANG XY, JIAO X, ZHANG SF, LUAN YS, ZHAO ZK. Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides[J]. Biotechnology Letters, 2018, 40(6): 933-940.
    [25] LIU XJ, ZHANG Y, LIU HD, JIAO X, ZHANG Q, ZHANG SF, ZHAO ZK. RNA interference in the oleaginous yeast Rhodosporidium toruloides[J]. FEMS Yeast Research, 2019, 19(3): 31-41.
    [26] DÍAZ T, FILLET S, CAMPOY S, VÁZQUEZ R, VIÑA J, MURILLO J, ADRIO JL. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3287-3300.
    [27] PINHEIRO MJ, BONTURI N, BELOUAH I, ALVES MIRANDA E, LAHTVEE PJ. Xylose metabolism and the effect of oxidative stress on lipid and carotenoid production in Rhodotorula toruloides: insights for future biorefinery[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1008.
    [28] NORA LC, WESTMANN CA, MARTINS-SANTANA L, de FÁTIMA ALVES L, MONTEIRO LMO, GUAZZARONI ME, SILVA-ROCHA R. The art of vector engineering: towards the construction of next-generation genetic tools[J]. Microbial Biotechnology, 2019, 12(1): 125-147.
    [29] MARTINS-SANTANA L, NORA LC, SANCHES- MEDEIROS A, LOVATE GL, CASSIANO MHA, SILVA-ROCHA R. Systems and synthetic biology approaches to engineer fungi for fine chemical production[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 117.
    [30] JOHNS AMB, LOVE J, AVES SJ. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides[J]. Frontiers in Microbiology, 2016, 7: 1666.
    [31] LIU YB, AMY YAP SH, JOHN KOH CM, JI LH. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species[J]. Microbial Cell Factories, 2016, 15: 1-9.
    [32] WANG YN, LIN XP, ZHANG SF, SUN WY, MA SJ, ZHAO ZK. Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides[J]. Yeast, 2016, 33(3): 99-106.
    [33] LIU Y, KOH CMJ, NGOH S T, JI L. Erratum to: engineering an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species[J]. Microbial Cell Factories, 2017, 16(1): 107.
    [34] NORA LC, WEHRS M, KIM J, CHENG JF, TARVER A, SIMMONS BA, MAGNUSON J, HARMON- SMITH M, SILVA-ROCHA R, GLADDEN JM, MUKHOPADHYAY A, SKERKER JM, KIRBY J. A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides[J]. Microbial Cell Factories, 2019, 18(1): 1-11.
    [35] LIU YB, KOH CMJ, TE NGOH S, JI LH. Engineering an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species[J]. Microbial Cell Factories, 2015, 14(1): 1-16.
    [36] 马斯佳. 圆红冬孢酵母诱导性遗传操作平台的构建[D]. 大连: 大连工业大学硕士学位论文, 2015. MA SJ. Inducible expression vector set for engineering in the oleaginous yeast Rhodosporidium toruloides[D]. Dalian: Master’s Thesis of Dalian Polytechnic University, 2015 (in Chinese).
    [37] SCHULTZ JC, CAO MF, ZHAO HM. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides[J]. Biotechnology and Bioengineering, 2019, 116(8): 2103-2109.
    [38] JIAO X, ZHANG Q, ZHANG SF, YANG XB, WANG Q, ZHAO KZ. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides[J]. FEMS Yeast Research, 2018, 18(8): foy086.
    [39] WEN Z, ZHANG S, ODOH CK, JIN M, ZHAO ZK. Rhodosporidium toruloides-a potential red yeast chassis for lipids and beyond[J]. FEMS Yeast Research, 2020, 20(5): foaa038.
    [40] JIAO X, LYU LT, ZHANG Y, HUANG QT, ZHOU RH, WANG SA, WANG S, ZHANG SF, ZHAO ZK. Reduction of lipid-accumulation of oleaginous yeast Rhodosporidium toruloides through CRISPR/Cas9- mediated inactivation of lipid droplet structural proteins[J]. FEMS Microbiology Letters, 2021, 368(16): fnab111.
    [41] TULLY M, GILBERT HJ. Transformation of Rhodosporidium toruloides[J]. Gene, 1985, 36(3): 235-240.
    [42] LIN XP, WANG YN, ZHANG SF, ZHU ZW, ZHOU YJ, YANG F, SUN WY, WANG XY, ZHAO ZK. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides[J]. FEMS Yeast Research, 2014, 14(4): 547-555.
    [43] KOH CMJ, LIU YB, MOEHNINSI, DU MG, JI LH. Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides[J]. BMC Microbiology, 2014, 14(1): 1-10.
    [44] TSAI YY, OHASHI T, KANAZAWA T, POLBUREE P, MISAKI R, LIMTONG S, FUJIYAMA K. Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16[J]. Current Genetics, 2017, 63(2): 359-371.
    [45] de FELIPE P, LUKE GA, HUGHES LE, GANI D, HALPIN C, RYAN MD. E unum pluribus: multiple proteins from a self-processing polyprotein[J]. Trends in Biotechnology, 2006, 24(2): 68-75.
    [46] LIU SS, ZHANG MY, REN YY, JIN GJ, TAO YS, LYU LT, ZHAO ZK, YANG XB. Engineering Rhodosporidium toruloides for limonene production[J]. Biotechnology for Biofuels, 2021, 14(1): 1-11.
    [47] FATMA Z, SCHULTZ JC, ZHAO HM. Recent advances in domesticating non-model microorganisms[J]. Biotechnology Progress, 2020, 36(5): 30081-300819.
    [48] KIRIYA K, TSUYUZAKI H, SATO M. Module-based systematic construction of plasmids for episomal gene expression in fission yeast[J]. Gene, 2017(637): 14-24.
    [49] CELIŃSKA E, LEDESMA-AMARO R, LARROUDE M, ROSSIGNOL T, PAUTHENIER C, NICAUD JM. Golden gate assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica[J]. Microbial Biotechnology, 2017, 10(2): 450-455.
    [50] LARROUDE M, PARK YK, SOUDIER P, KUBIAK M, NICAUD JM, ROSSIGNOL T. A modular golden gate toolkit for Yarrowia lipolytica synthetic biology[J]. Microbial biotechnology, 2019, 12(6): 1249-1259.
    [51] PRIELHOFER R, BARRERO JJ, STEUER S, GASSLER T, ZAHRL R, BAUMANN K, SAUER M, MATTANOVICH D, GASSER B, MARX H. GoldenPiCS: a golden gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris[J]. BMC Systems Biology, 2017, 11(1): 1-14.
    [52] RAJKUMAR AS, VARELA JA, JUERGENS H, DARAN JM G, MORRISSEY JP. Biological parts for Kluyveromyces marxianus synthetic biology[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 97.
    [53] BONTURI N, PINHEIRO MJ, de OLIVEIRA PM, RUSADZE E, EICHINGER T, LIUDŽIŪTĖ G, de BIAGGI JS, BRAUER A, REMM M, ALVES MIRANDA E, LEDESMA-AMARO R, LAHTVEE PJ. Development of a dedicated golden gate assembly platform (RtGGA) for Rhodotorula toruloides[J]. Metabolic Engineering Communications, 2022, 15: e00200.
    [54] CARL SJ, SHEKHAR M, EMILY G, ANDREA M, HOANG D, COSTAS M, ZHAO HM. Metabolic engineering of Rhodotorula toruloides IFO0880 improves C16 and C18 fatty alcohol production from synthetic media[J]. Microbial Cell Factories, 2022, 21(1): 1-14.
    [55] WANG SX, CHEN HQ, TANG X, ZHANG H, CHEN W, CHEN YQ. Molecular tools for gene manipulation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2017, 101(22): 8063-8075.
    [56] LIN XP, GAO N, LIU SS, ZHANG SF, SONG S, JI CF, DONG XP, SU YC, ZHAO ZK, ZHU BW. Characterization the carotenoid productions and profiles of three Rhodosporidium toruloides mutants from Agrobacterium tumefaciens-mediated transformation[J]. Yeast, 2017, 34(8): 335-342.
    [57] LIU HD, JIAO X, WANG YN, YANG XB, SUN WY, WANG JH, ZHANG SF, ZHAO KZ. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation[J]. FEMS Yeast Research, 2017, 17(2): fox017.
    [58] CAI P, DUAN XP, WU XY, GAO LH, YE M, ZHOU YJ. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J]. Nucleic Acids Research, 2021, 49(13): 7791-7805.
    [59] GAO JQ, GAO N, ZHAI XX, ZHOU YJ. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha[J]. iScience, 2021: 102168.
    [60] ZHANG K, DUAN XP, CAI P, GAO LH, WU XY, YAO L, ZHOU YJ. Fusing an exonuclease with Cas9 enhances homologous recombination in Pichia pastoris[J]. Microbial Cell Factories, 2022, 21(1): 1-9.
    [61] OTOUPAL PB, ITO M, ARKIN AP, MAGNUSON JK, GLADDEN JM, SKERKER JM. Multiplexed CRISPR- Cas9-based genome editing of Rhodosporidium toruloides[J]. Msphere, 2019, 4(2): e00099-19.
    [62] ZHENG XM, ZHENG P, ZHANG K, CAIRNS TC, MEYER V, SUN JB, MA YH. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger[J]. ACS Synthetic Biology, 2019, 8(7): 1568-1574.
    [63] GAO JQ, LI YX, YU W, ZHOU YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943.
    [64] SAURABH S, VIDYARTHI AS, PRASAD D. RNA interference: concept to reality in crop improvement[J]. Planta, 2014, 239(3): 543-564.
    [65] SMIALOWSKA A, DJUPEDAL I, WANG JW, KYLSTEN P, SWOBODA P, EKWALL K. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe[J]. Biochemical and Biophysical Research Communications, 2014, 444(2): 254-259.
    [66] HAMEDIRAD M, LIAN JZ, LI HJ, ZHAO HM. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization[J]. Biotechnology and Bioengineering, 2018, 115(6): 1552-1560.
    [67] GORLACH JM, McDADE HC, PERFECT JR, COX GM. Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy[J]. Microbiology, 2002, 148(1): 213-219.
    [68] ZHANG Y, ZHANG SF, CHU YD, ZHANG Q, ZHOU RH, YU D, WANG S, LYU LT, XU GW, ZHAO ZK. Genetic manipulation of the interconversion between diacylglycerols and triacylglycerols in Rhodosporidium toruloides[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:10349.
    [69] WANG YN, ZHANG SF, PÖTTER M, SUN WY, LI L, YANG XB, JIAO X, ZHAO ZK. Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids[J]. Applied Biochemistry and Biotechnology, 2016, 180(8): 1497-1507.
    [70] 林金涛, 沈宏伟, 张泽会, 胡翠敏, 靳国杰, 谭海东, 赵宗保. 圆红冬孢酵母两阶段培养法生产微生物油脂[J]. 生物工程学报, 2010, 26(7): 997-1002. LIN JT, SHEN HW, ZHANG ZH, HU CM, JIN GJ, TAN HD, ZHAO ZB. Microbial lipid production by Rhodosporidium toruloides in a two-stage culture mode[J]. Chinese Journal of Biotechnology, 2010, 26(7): 997-1002 (in Chinese).
    [71] LEONG WH, LIM JW, LAM MK, UEMURA Y , HO YC. Third generation biofuels: a nutritional perspective in enhancing microbial lipid production[J]. Renewable and Sustainable Energy Reviews, 2018, 91(8): 950-961.
    [72] YAN Q, PFLEGER BF. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals[J]. Metabolic Engineering, 2020, 58: 35-46.
    [73] XU JY, DU W, ZHAO XB, LIU DH. Renewable microbial lipid production from oleaginous yeast: some surfactants greatly improved lipid production of Rhodosporidium toruloides[J]. World Journal of Microbiology and Biotechnology, 2016, 32(7): 1-9.
    [74] YANG XB, SUN WY, SHEN HW, ZHANG SF, JIAO X, ZHAO ZK. Expression of phosphotransacetylase in Rhodosporidium toruloides leading to improved cell growth and lipid production[J]. RSC Advances, 2018, 8(43): 24673-24678.
    [75] ZHANG SY, ITO M, SKERKER JM, ARKIN AP, RAO CV. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation[J]. Applied Microbiology and Biotechnology, 2016, 100(21): 9393-9405.
    [76] ZHANG SY, SKERKER JM, RUTTER CD, MAURER MJ, ARKIN AP, RAO CV. Engineering Rhodosporidium toruloides for increased lipid production[J]. Biotechnology and Bioengineering, 2016, 113(5): 1056-1066.
    [77] LIU YB, KOH CMJ, YAP SA, CAI L, JI LH. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides[J]. Biotechnology for Biofuels, 2021, 14(1): 1-17.
    [78] WU CC, OHASHI T, KAJIURA H, SATO Y, MISAKI R, HONDA K, LIMTONG S, FUJIYAMA K. Functional characterization and overexpression of Δ12-desaturase in the oleaginous yeast Rhodotorula toruloides for production of linoleic acid-rich lipids[J]. Journal of Bioscience and Bioengineering, 2021, 131(6): 631-639.
    [79] LIU D, GEISELMAN GM, CORADETTI S, CHENG YF, KIRBY J, PRAHL JP, JACOBSON O, SUNDSTROM ER, TANJORE D, SKERKER JM, GLADDEN J. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides[J]. Biotechnology and Bioengineering, 2020, 117(5): 1418-1425.
    [80] FILLET S, GIBERT J, SUÁREZ B, LARA A, RONCHEL C, ADRIO JL. Fatty alcohols production by oleaginous yeast[J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(11): 1463-1472.
    [81] ZHANG Y, PENG J, ZHAO HM, SHI SB. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters[J]. Biotechnology for Biofuels, 2021, 14(1): 1-11.
    [82] SOCCOL CR, DALMAS NETO CJ, SOCCOL VT, SYDNEY EB, Da COSTA ESF, MEDEIROS ABP, de SOUZA VANDENBERGHE LP. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study[J]. Bioresource Technology, 2017, 223: 259-268.
    [83] YU KO, JUNG J, KIM SW, PARK CH, HAN SO. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase[J]. Biotechnology and Bioengineering, 2012, 109(1): 110-115.
    [84] JIN GJ, ZHANG YX, SHEN HW, YANG XB, XIE HB, ZHAO ZK. Fatty acid ethyl esters production in aqueous phase by the oleaginous yeast Rhodosporidium toruloides[J]. Bioresource Technology, 2013, 150: 266-270.
    [85] LYU LT, CHU YD, ZHANG SF, ZHANG Y, HUANG QT, WANG S, ZHAO ZK. Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 768934.
    [86] TSAI YY, OHASHI T, WU CC, BATAA D, MISAKI R, LIMTONG S, FUJIYAMA K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production[J]. Journal of Bioscience and Bioengineering, 2019, 127(4): 430-440.
    [87] WANG S, KAMAL R, ZHANG Y, ZHOU RH, LV LT, HUANG QT, QIAN S, ZHANG SF, ZHAO ZK. Expression of VHb improved lipid production in Rhodosporidium toruloides[J]. Energies, 2020, 13(17): 4446.
    [88] GEISELMAN GM, ZHUANG X, KIRBY J, TRAN-GYAMFI MB, PRAHL JP, SUNDSTROM ER, GAO YQ, MUNOZ MUNOZ N, NICORA CD, CLAY DM, PAPA G, BURNUM-JOHNSON KE, MAGNUSON JK, TANJORE D, SKERKER JM, GLADDEN JM. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides[J]. Microbial Cell Factories, 2020, 19(1): 1-12.
    [89] ZHUANG X, KILIAN O, MONROE E, ITO M, TRAN-GYMFI MB, LIU F, DAVIS RW, MIRSIAGHI M, SUNDSTROM E, PRAY T, SKERKER JM, GEORGE A, GLADDEN JM. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides[J]. Microbial Cell Factories, 2019, 18(1): 1-15.
    [90] KIRBY J, GEISELMAN GM, YAEGASHI J, KIM J, ZHUANG X, TRAN-GYAMFI MB, PRAHL JP, SUNDSTROM ER, GAO YQ, MUNOZ N, BURNUM- JOHNSON KE, BENITES VT, BAIDOO EEK, FUHRMANN A, SEIBEL K, WEBB-ROBERTSON BJ M, ZUCKER J, NICORA CD, TANJORE D, MAGNUSON JK, et al. Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass[J]. Biotechnology for Biofuels, 2021, 14(1): 1-16.
    [91] CAO MF, TRAN VG, QIN JS, OLSON A, MISHRA S, SCHULTZ JC, HUANG CS, XIE DM, ZHAO HM. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone[J]. Biotechnology and Bioengineering, 2022, 119(9): 2529-2540.
    [92] ZHANG MY, GAO QD, LIU YJ, FANG ZM, GONG ZW, ZHAO ZK, YANG XB. Metabolic engineering of Rhodotorula toruloides for resveratrol production[J]. Microbial Cell Factories, 2022, 21(1): 1-9.
    [93] LEE JJL, NG KR, LIANG JQ, CUI X, LI A, CHEN WN. Engineering the phenylpropanoid pathway in Rhodosporidium toruloides for naringenin production from tyrosine by leveraging on its native PAL gene[J]. ACS Food Science & Technology, 2023, 3(1): 92-99.
    [94] MEZZOMO N, FERREIRA SRS. Carotenoids functionality, sources, and processing by supercritical technology: a review[J]. Journal of Chemistry, 2016, 2016: 1-16.
    [95] DU C, LI YC, GUO YH, HAN M, ZHANG WG, QIAN H. The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors[J]. Biochemical and Biophysical Research Communications, 2016, 469(4): 1146-1152.
    [96] BAO RQ, GAO N, LV J, JI CF, LIANG HP, LI SJ, YU CX, WANG ZY, LIN XP. Enhancement of torularhodin production in Rhodosporidium toruloides by Agrobacterium tumefaciens-mediated transformation and culture condition optimization[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1156-1164.
    [97] BROMANN K, TOIVARI M, VILJANEN K, RUOHONEN L, NAKARI-SETÄLÄ T. Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production[J]. Applied Microbiology and Biotechnology, 2016, 100(14): 6345-6359.
    [98] KONG MK, KANG HJ, KIM JH, OH SH, LEE PC. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli[J]. Journal of Biotechnology, 2015, 214: 95-102.
    [99] HOSKINS J, JACK G, PEIRIS RD, STARR DT, WADE H, WRIGHT E, STERN J. Enzymatic control of phenylalanine intake in phenylketonuria[J]. The Lancet, 1980, 315(8165): 392-394.
    [100] CUI JD, QIU JQ, FAN XW, JIA XW Tan ZL. Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review[J]. Critical Reviews in Biotechnology, 2014, 34(3): 258-268.
    [101] SHIN SY, JUNG SM, KIM MD, HAN NS, SEO JH. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2012, 51(4): 211-216.
    [102] PILONE MS, POLLEGIONI L. d-amino acid oxidase as an industrial biocatalyst[J]. Biocatalysis and Biotransformation, 2002, 20(3): 145-159.
    [103] POLLEGIONI L, MOLLA G. New biotech applications from evolved d-amino acid oxidases[J]. Trends in Biotechnology, 2011, 29(6): 276-283.
    [104] GREMBECKA M. Sugar alcohols—their role in the modern world of sweeteners: a review[J]. European Food Research and Technology, 2015, 241(1): 1-14.
    [105] JAGTAP SS, BEDEKAR AA, LIU JJ, JIN YS, RAO CV. Production of galactitol from galactose by the oleaginous yeast Rhodosporidium toruloides IFO0880[J]. Biotechnology for Biofuels, 2019, 12(1): 1-13.
    [106] KORDOWSKA-WIATER M. Production of arabitol by yeasts: current status and future prospects[J]. Journal of Applied Microbiology, 2015, 119(2): 303-314.
    [107] REGNAT K, MACH RL, MACH-AIGNER AR. Erythritol as sweetener—wherefrom and whereto?[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 587-595.
    [108] RZECHONEK DA, DOBROWOLSKI A, RYMOWICZ W, MIROŃCZUK AM. Recent advances in biological production of erythritol[J]. Critical Reviews in Biotechnology, 2018, 38(4): 620-633.
    [109] JAGTAP SS, RAO CV. Production of d-arabitol from d-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 143-151.
    [110] WEHRS M, GLADDEN JM, LIU YZ, PLATZ L, PRAHL JP, MOON J, PAPA G, SUNDSTROM E, GEISELMAN GM, TANJORE D, KEASLING JD, PRAY TR, SIMMONS BA, MUKHOPADHYAY A. Correction: sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides[J]. Green Chemistry, 2019, 21(21): 6027-6029.
    [111] SAINI R, HEGDE K, BRAR SK, VEZINA P. Advanced biofuel production and road to commercialization: an insight into bioconversion potential of Rhodosporidium sp.[J]. Biomass and Bioenergy, 2020, 132: 105439.
    [112] QIAO KJ, IMAM ABIDI SH, LIU HJ, ZHANG HR, CHAKRABORTY S, WATSON N, KUMARAN AJIKUMAR P, STEPHANOPOULOS G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica[J]. Metabolic Engineering, 2015, 29: 56-65.
    [113] WATSUNTORN W, CHUENGCHAROENPHANICH N, NILTAYA P, BUTKUMCHOTE C, THEERACHAT M, GLINWONG C, QI W, WANG ZM, CHULALAKSANANUKUL W. A novel oleaginous yeast Saccharomyces cerevisiae CU-TPD4 for lipid and biodiesel production[J]. Chemosphere, 2021, 280: 130782.
    [114] FERREIRA R, TEIXEIRA PG, SIEWERS V, NIELSEN J. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1262-1267.
    [115] TEIXEIRA SOUZA KS, LACERDA RAMOS C, SCHWAN RF, DIAS DR. Lipid production by yeasts grown on crude glycerol from biodiesel industry[J]. Preparative Biochemistry & Biotechnology, 2017, 47(4): 357-363.
    [116] ZHANG Y, PANG J, LIU S, NIE KL, DENG L, WANG F, LIU JF. Harnessing transcription factor Mga2 and fatty acid elongases to overproduce palmitoleic acid in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2022, 181: 108402.
    [117] WANG KF, SHI TQ, WANG JP, WEI P, LEDESMA-AMARO R, JI XJ. Engineering the lipid and fatty acid metabolism in Yarrowia lipolytica for sustainable production of high oleic oils[J]. ACS Synthetic Biology, 2022, 11(4): 1542-1554.
    [118] ZHANG BX, CHEN HQ, LI M, GU ZN, SONG YD, RATLEDGE C, CHEN YQ, ZHANG H, CHEN W. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid[J]. Microbial Cell Factories, 2013, 12(1): 1-8.
    [119] WEI LJ, MA YY, CHENG BQ, GAO Q, HUA Q. Metabolic engineering Yarrowia lipolytica for a dual biocatalytic system to produce fatty acid ethyl esters from renewable feedstock in situ and in one pot[J]. Applied Microbiology and Biotechnology, 2021, 105(21): 8561-8573.
    [120] SHI WQ, LI J, CHEN YF, CHEN YF, GUO XW, XIAO DG. Enhancement of C6-C10 fatty acid ethyl esters production in Saccharomyces cerevisiae CA by metabolic engineering[J]. LWT, 2021, 145: 111496.[121] CORDOVA LT, BUTLER J, ALPER HS. Direct production of fatty alcohols from glucose using engineered strains of Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2020, 10:e00105.
    [122] HU YT, ZHU ZW, GRADISCHNIG D, WINKLER M, NIELSEN J, SIEWERS V. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(37):22974-22983.
    [123] LARROUDE M, CELINSKA E, BACK A, THOMAS S, NICAUD JM, LEDESMA-AMARO R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2):464-472.
    [124] BU X, LIN JY, DUAN CQ, KOFFAS MAG, YAN GL. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1):1-13.
    [125] CHENG BQ, WEI LJ, LV YB, CHEN J, HUA Q. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24(3):500-506.
    [126] ZHANG X, LIU X, MENG YH, ZHANG LJ, QIAO JJ, ZHAO GR. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production[J]. Biochemical Engineering Journal, 2021, 176:108155.
    [127] ZHU K, ZHAO BX, ZHANG YH, KONG J, RONG LX, LIU SQ, WANG YP, ZHANG CY, XIAO DG, FOO JL, YU AQ. Mitochondrial engineering of Yarrowia lipolytica for sustainable production of α-bisabolene from waste cooking oil[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29):9644-9653.
    [128] ICHINOSE H, UKEBA S, KITAOKA T. Latent potentials of the white-rot basidiomycete Phanerochaete chrysosporium responsible for sesquiterpene metabolism:CYP5158A1 and CYP5144C8 decorate (E)-α-bisabolene[J]. Enzyme and Microbial Technology, 2022, 158:110037.
    [129] MARKHAM KA, PALMER CM, CHWATKO M, WAGNER JM, MURRAY C, VAZQUEZ S, SWAMINATHAN A, CHAKRAVARTY I, LYND NA, ALPER HS. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9):2096-2101.
    [130] VICKERYCR, CARDENAS J, BOWMAN ME, BURKART MD, Da SILVA NA, NOEL JP. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2018, 115(6):1394-1402.
    [131] LIU MS, WANG C, REN XF, GAO S, YU SQ, ZHOU JW. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica[J]. Bioresource Technology, 2022, 365:128178.
    [132] COSTA CE, ROMANÍ A, TEIXEIRA JA, DOMINGUES L. Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae[J]. Bioresource Technology, 2022, 359:127463.
    [133] PALMER CM, MILLER KK, NGUYEN A, ALPER HS. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metabolic Engineering, 2020, 57:174-181.
    [134] LI HB, MA WJ, LYV Y, GAO S, ZHOU JW. Glycosylation modification enhances (2S)-naringenin production in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2022, 11(7):2339-2347.
    [135] KANG W, MA T, LIU M, QU JL, LIU ZJ, ZHANG HW, SHI B, FU S, MA JC, LAI LTF, HE SC, QU JN, WING-NGOR AU S, HO KANG B, YU LAU WC, DENG ZX, XIA J, LIU TG. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10:4248.
    [136] OSORIO-GONZÁLEZ CS, HEGDE K, BRAR SK, KERMANSHAHIPOUR A, AVALOS-RAMÍREZ A. Challenges in lipid production from lignocellulosic biomass using Rhodosporidium sp.; A look at the role of lignocellulosic inhibitors[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(3):740-759.
    [137] QIAO KJ, WASYLENKO TM, ZHOU K, XU P, STEPHANOPOULOS G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35(2):173-177.
    [138] GREWAL PS, SAMSON JA, BAKER JJ, CHOI B, DUEBER JE. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production[J]. Nature Chemical Biology, 2021, 17(1):96-103.
    [139] DUEBER JE, WU GC, MALMIRCHEGINI GR, MOON TS, PETZOLD CJ, ULLAL AV, PRATHER KLJ, KEASLING JD. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8):753-759.
    [140] LIU ZJ, RADI M, MOHAMED ETT, FEIST AM, DRAGONE G, MUSSATTO SI. Adaptive laboratory evolution of Rhodosporidium toruloides to inhibitors derived from lignocellulosic biomass and genetic variations behind evolution[J]. Bioresource Technology, 2021, 333:125171.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高琦豆,董亚琦,黄颖,刘懿娟,杨晓兵. 圆红冬孢酵母基因编辑及天然产物合成的研究进展[J]. 生物工程学报, 2023, 39(6): 2313-2333

复制
分享
文章指标
  • 点击次数:562
  • 下载次数: 1397
  • HTML阅读次数: 930
  • 引用次数: 0
历史
  • 收稿日期:2022-12-15
  • 录用日期:2023-02-15
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6054900位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司