模块化工程改造大肠杆菌生产L-色氨酸
作者:
基金项目:

国家重点研发计划(2021YFC2100700);江苏省农业自主创新资金项目(CX(22)1012)


Modular engineering of Escherichia coli for high-level production of l-tryptophan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    L-色氨酸作为一种必需氨基酸,广泛应用于食品、饲料和医药等领域。目前,微生物法生产L-色氨酸存在转化率低等问题。为此,本研究通过敲除L-色氨酸操纵子阻遏蛋白(L-tryptophan operon repressor protein, trpR)、替换l-色氨酸弱化子(trpL)、引入抗反馈调节的aroGfbr等,获得可积累11.80 g/L L-色氨酸的底盘菌株大肠杆菌(Escherichia coli)TRP3。在此基础上,将L-色氨酸合成途径分为中心代谢途径模块、莽草酸(shikimic acid, SA)途径至分支酸(chorismic acid, CHA)模块、分支酸至L-色氨酸模块,并借助启动子工程,通过平衡中心代谢途径模块、莽草酸途径至分支酸模块、分支酸至L-色氨酸模块,获得工程菌E.coli TRP9。在5 L发酵罐中,工程菌E.coli TRP9的L-色氨酸产量提升至36.08 g/L,糖酸转化率提升至18.55%,达到理论转化率的81.7%。本研究利用模块工程策略,构建了高产L-色氨酸生产菌株,为l-色氨酸的规模化生产奠定了良好的基础。

    Abstract:

    As an essential amino acid, l-tryptophan is widely used in food, feed and medicine sectors. Nowadays, microbial l-tryptophan production suffers from low productivity and yield. Here we construct a chassis E. coli TRP3 producing 11.80 g/L l-tryptophan, which was generated by knocking out the l-tryptophan operon repressor protein (trpR) and the l-tryptophan attenuator (trpL), and introducing the feedback-resistant mutant aroGfbr. On this basis, the l-tryptophan biosynthesis pathway was divided into three modules, including the central metabolic pathway module, the shikimic acid pathway to chorismate module and the chorismate to Then we used promoter engineering approach to balance the three modules and obtained an engineered E. coli TRP9. After fed-batch cultures in a 5 L fermentor, reached to 36.08 g/L, with a yield of 18.55%, which reached 81.7% of the maximum theoretical yield. The laid a good foundation for large-scale production of tryptophan.

    参考文献
    [1] LIU S, XU JZ, ZHANG WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophanproduction[J]. World Journal of Microbiology and Biotechnology, 2022, 38(2): 1-16.
    [2] IKEDA M. Amino acid production processes[M]// Microbial Production of l-Amino Acids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 1-35.
    [3] FANG MY, ZHANG C, YANG S, CUI JY, JIANG PX, LOU K, WACHI M, XING XH. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway[J]. Microbial Cell Factories, 2015, 14(1): 1-13.
    [4] FANG MY, WANG TM, ZHANG C, BAI JL, ZHENG X, ZHAO XJ, LOU CB, XING XH. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli[J]. Metabolic Engineering, 2016, 33: 41-51.
    [5] IKEDA M. Towards bacterial strains overproducing L-tryptophanand other aromatics by metabolic engineering[J]. Applied Microbiology and Biotechnology, 2006, 69(6): 615-626.
    [6] ZHANG J, PETERSEN SD, RADIVOJEVIC T, RAMIREZ A, PÉREZ-MANRÍQUEZ A, ABELIUK E, SÁNCHEZ BJ, COSTELLO Z, CHEN Y, FERO MJ, MARTIN HG, NIELSEN J, KEASLING JD, JENSEN MK. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism[J]. Nature Communications, 2020, 11: 4880.
    [7] NIU H, LI RR, LIANG QF, QI QS, LI Q, GU PF. Metabolic engineering for improving L-tryptophanproduction in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(1): 55-65.
    [8] RODRIGUEZ A, MARTNEZ JA, FLORES N, ESCALANTE A, GOSSET G, BOLIVAR F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds[J]. Microbial Cell Factories, 2014, 13(1): 1-15.
    [9] CHEN L, ZENG AP. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophanat high concentration[J]. Applied Microbiology and Biotechnology, 2017, 101(2): 559-568.
    [10] BERRY A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering[J]. Trends in Biotechnology, 1996, 14(7): 250-256.
    [11] SHEN T, LIU Q, XIE XX, XU QY, CHEN N. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression[J]. Journal of Biomedicine and Biotechnology, 2012, 2012: 605219.
    [12] XU QY, BAI F, CHEN N, BAI G. Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophanproduction[J]. PLoS One, 2017, 12(6): e0179240.
    [13] GUO L, DING S, LIU YD, GAO C, HU GP, SONG W, LIU J, CHEN XL, LIU LM. Enhancing tryptophan production by balancing precursors in Escherichia coli[J]. Biotechnology and Bioengineering, 2022, 119(3): 983-993.
    [14] JIANG Y, CHEN B, DUAN CL, SUN BB, YANG JJ, YANG S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514.
    [15] GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA Ⅲ, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345.
    [16] CHEN Z, CHEN XJ, LI QY, ZHOU P, ZHAO ZJ, LI BG. Transcriptome analysis reveals potential mechanisms of l-serine production by Escherichia coli fermentation in different carbon-nitrogen ratio medium[J]. Foods, 2022, 11(14): 2092.
    [17] DING DQ, BAI DY, LI JL, MAO ZT, ZHU YR, LIU P, LIN JP, MA HW, ZHANG DW. Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2021, 44(8): 1685-1697.
    [18] LEE SY. High cell-density culture of Escherichia coli[J]. Trends in Biotechnology, 1996, 14(3): 98-105.
    [19] NEUMANN P, WEIDNER A, PECH A, STUBBS MT, TITTMANN K. Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17390-17395.
    [20] WANG J, HUANG J, SHI JM, XU QY, XIE XX, CHEN N. Fermentation characterization of an L-tryptophanproducing Escherichia coli strain with inactivated phosphotransacetylase[J]. Annals of Microbiology, 2013, 63(4): 1219-1224.
    [21] SAWERS G. A novel mechanism controls anaerobic and catabolite regulation of the Escherichia coli tdc operon[J]. Molecular Microbiology, 2004, 39(5): 1285-1298.
    [22] LIU LN, DUAN XG, WU J. L-tryptophan production in Escherichia coli improved by weakening the pta-AckA pathway[J]. PLoS One, 2016, 11(6): e0158200.
    [23] ZHU JF, SHIMIZU K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for d-lactate production under microaerobic condition[J]. Metabolic Engineering, 2005, 7(2): 104-115.
    [24] DOWD SR, PRATT EA, SUN ZY, HO C. Nature and environment of the sulfhydryls of membrane-associated d-lactate dehydrogenase of Escherichia coli[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1995, 1252(2): 278-283.
    [25] WANG J, SHEN XL, REY J, YUAN QP, YAN YJ. Recent advances in microbial production of aromatic natural products and their derivatives[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 47-61.
    [26] 李柱. 通过理性遗传改造大肠杆菌利用葡萄糖合成色氨酸的研究[D]. 天津: 天津大学硕士学位论文, 2020. LI Z. Engineering Escherichia coli for production of tryptophan from glucose via rational genetic manipulations[D]. Tianjin: Master’s Thesis of Tianjin University, 2020 (in Chinese).
    [27] JUMINAGA D, BAIDOO EEK, REDDING- JOHANSON AM, BATTH TS, BURD H, MUKHOPADHYAY A, PETZOLD CJ, KEASLING JD. Modular engineering of l-tyrosine production in Escherichia coli[J]. Applied and Environmental Microbiology, 2012, 78(1): 89-98.
    [28] GUO L, DIAO WW, GAO C, HU GP, DING Q, YE C, CHEN XL, LIU J, LIU LM. Engineering Escherichia coli life span for enhancing chemical production[J]. Nature Catalysis, 2020, 3(3): 307-318.
    [29] 郭亮, 高聪, 柳亚迪, 陈修来, 刘立明. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. GUO L, GAO C, LIU YD, CHEN XL, LIU LM. Advances in bioproduction of feed amino acid by Escherichia coli[J]. Synthetic Biology Journal, 2021, 2(6): 964-981 (in Chinese).
    [30] MIGUEL S, GUO WH, FENG XY, SHAO ZY. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2016, 113(12): 2676-2685.
    [31] GOSSET G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system[J]. Microbial Cell Factories, 2005, 4(1): 1-11.
    [32] DODGE TC, GERSTNER JM. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(11): 1238-1245.
    [33] LIU LN, CHEN S, WU J. Phosphoenolpyruvate: glucose phosphotransferase system modification increases the conversion rate during L-tryptophanproduction in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(10): 1385-1395.
    [34] 吴涛, 赵津津, 毛贤军. 大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造对产l-色氨酸的影响[J]. 生物工程学报, 2017, 33(11): 1877-1882. WU T, ZHAO JJ, MAO XJ. Effect of PTS modifications on L-tryptophanproduction in Escherichia coli[J]. Chinese Journal of Biotechnology, 2017, 33(11): 1877-1882 (in Chinese).
    [35] XIONG B, ZHU YD, TIAN DG, JIANG S, FAN XG, MA Q, WU HY, XIE XX. Flux redistribution of central carbon metabolism for efficient production of L-tryptophanin Escherichia coli[J]. Biotechnology and Bioengineering, 2021, 118(3): 1393-1404.
    [36] ITO J, YANOFSKY C. The nature of the anthranilic acid synthetase complex of Escherichia coli[J]. Journal of Biological Chemistry, 1966, 241(17): 4112-4114.
    [37] CHEN YY, LIU YF, DING DQ, CONG LN, ZHANG DW. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production[J]. Journal of Industrial Microbiology and Biotechnology, 2018, 45(5): 357-367.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁爽,陈修来,高聪,宋伟,吴静,魏婉清,刘佳,刘立明. 模块化工程改造大肠杆菌生产L-色氨酸[J]. 生物工程学报, 2023, 39(6): 2359-2374

复制
分享
文章指标
  • 点击次数:815
  • 下载次数: 1537
  • HTML阅读次数: 1161
  • 引用次数: 0
历史
  • 收稿日期:2022-12-15
  • 录用日期:2023-02-14
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6002294位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司