代谢工程改造大肠杆菌合成己二酸
作者:
基金项目:

国家重点研发计划(2021YFC2100700);江苏省杰出青年基金(BK20211529)


Metabolic engineering of Escherichia coli for adipic acid production
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    己二酸是一种具有重要应用价值的二元羧酸,是合成尼龙-66的关键前体。目前,生物法生产己二酸存在生产周期长、生产效率低的问题。本研究选择一株野生型高产琥珀酸菌株大肠杆菌(Escherichia coli) FMME N-2为底盘细胞,首先通过引入逆己二酸降解途径的关键酶,成功构建了可合成0.34 g/L己二酸的E. coli JL00菌株;接着,对合成路径限速酶进行表达优化,使E. coli JL01菌株在摇瓶发酵条件下产量达到0.87 g/L;随后,通过敲除sucD基因、过表达acs基因和突变lpd基因的组合策略平衡己二酸合成前体的供应,优化菌株E. coli JL12己二酸产量进一步提升至1.51 g/L;最后,在5 L发酵罐上对己二酸发酵工艺进行优化。工程菌株经72 h分批补料发酵,己二酸的产量达到22.3 g/L,转化率为0.25 g/g,生产强度为0.31 g/(L·h),具备了一定的应用潜力。本研究可为包括己二酸在内的多种二元羧酸细胞工厂的构建提供理论依据和技术基础。

    Abstract:

    Adipic acid is a high-value-added dicarboxylic acid which is primarily used in the production of nylon-66 for manufacturing polyurethane foam and polyester resins. At present, the biosynthesis of adipic acid is hampered by its low production efficiency. By introducing the key enzymes of adipic acid reverse degradation pathway into a succinic acid overproducing strain Escherichia coli FMME N-2, an engineered E. coli JL00 capable of producing 0.34 g/L adipic acid was constructed. Subsequently, the expression level of the rate-limiting enzyme was optimized and the adipic acid titer in shake-flask fermentation increased to 0.87 g/L. Moreover, the supply of precursors was balanced by a combinatorial strategy consisting of deletion of sucD, over-expression of acs, and mutation of lpd, and the adipic acid titer of the resulting E. coli JL12 increased to 1.51 g/L. Finally, the fermentation process was optimized in a 5 L fermenter. After 72 h fed-batch fermentation, adipic acid titer reached 22.3 g/L with a yield of 0.25 g/g and a productivity of 0.31 g/(L·h). This work may serve as a technical reference for the biosynthesis of various dicarboxylic acids.

    参考文献
    [1] PUGH S, McKENNA R, HALLOUM I, NIELSEN DR. Engineering Escherichia coli for renewable benzyl alcohol production[J]. Metabolic Engineering Communications, 2015, 2: 39-45.
    [2] WANG F, ZHAO J, LI Q, YANG J, LI RJ, MIN J, YU XJ, ZHENG GW, YU HL, ZHAI C, ACEVEDO-ROCHA CG, MA LX, LI AT. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia[J]. Nature Communications, 2020, 11: 5035.
    [3] POLEN T, SPELBERG M, BOTT M. Toward biotechnological production of adipic acid and precursors from biorenewables[J]. Journal of Biotechnology, 2013, 167(2): 75-84.
    [4] LEE SY, KIM HU, CHAE TU, CHO JS, KIM JW, SHIN JH, KIM DI, KO YS, DAE JANG W, JANG YS. A comprehensive metabolic map for production of bio-based chemicals[J]. Nature Catalysis, 2019, 2(1): 18-33.
    [5] NIU W, DRATHS KM, FROST JW. Benzene-free synthesis of adipic acid[J]. Biotechnology Progress, 2002, 18(2): 201-211.
    [6] HAGEN A, POUST S, de ROND T, FORTMAN JL, KATZ L, PETZOLD CJ, KEASLING JD. Engineering a polyketide synthase for in vitro production of adipic acid[J]. ACS Synthetic Biology, 2016, 5(1): 21-27.
    [7] LI Y, CHENG ZZ, ZHAO CL, GAO C, SONG W, LIU LM, CHEN XL. Reprogramming Escherichia coli metabolism for bioplastics synthesis from waste cooking oil[J]. ACS Synthetic Biology, 2021, 10(8): 1966-1979.
    [8] YU JL, XIA XX, ZHONG JJ, QIAN ZG. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli[J]. Biotechnology and Bioengineering, 2014, 111(12): 2580-2586.
    [9] ZHAO M, HUANG DX, ZHANG XJ, KOFFAS MAG, ZHOU JW, DENG Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway[J]. Metabolic Engineering, 2018, 47: 254-262.
    [10] DENG Y, MA LZ, MAO Y. Biological production of adipic acid from renewable substrates: current and future methods[J]. Biochemical Engineering Journal, 2016, 105: 16-26.
    [11] ZHAO M, LI GH, DENG Y. Engineering Escherichia coli for glutarate production as the C5 platform backbone[J]. Applied and Environmental Microbiology, 2018, 84(16):e00814-18.
    [12] KALLSCHEUER N, GÄTGENS J, LÜBCKE M, PIETRUSZKA J, BOTT M, POLEN T. Improved production of adipate with Escherichia coli by reversal of β-oxidation[J]. Applied Microbiology and Biotechnology, 2017, 101 (6): 2371-2382.
    [13] JIANG Y, CHEN B, DUAN CL, SUN BB, YANG JJ, YANG S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied and Environmental Microbiology, 2015, 81(7): 2506-2514.
    [14] BURGARD AP, PHARKYA P, OSTERHOUT RE. Microorganisms for the production of adipic acid and other compounds: US8216814[P]. 2012-07-10.
    [15] 刘立明, 丁强, 陈修来, 高聪, 郭亮, 胡贵鹏, 刘佳. 一种生产己二酸的重组菌, 构建方法和应用: CN114107153A[P]. 2022-03-01. LIU LM, DING Q, CHEN XL, GAO C, GUO L, HU GP, LIU J. Recombinant bacterium for producing adipic acid, construction method and application: CN114107153A[P]. 2022-03-01 (in Chinese).
    [16] 陈修来, 李洋, 刘立明, 赵春雷, 张永艺, 高聪, 刘佳, 郭亮. 一株产己二酸的重组大肠杆菌的构建及应用: CN113293120A[P]. 2021-08-24. CHEN XL, LI Y, LIU LM, ZHAO CL, ZHANG YY, GAO C, LIU J, GUO L. Construction and application of recombinant Escherichia coli for producing adipic acid: CN113293120A[P]. 2021-08-24 (in Chinese).
    [17] BURGARD AP, PHARKYA P, OSTERHOUT RE. Microorganisms for the production of adipic acid and other compounds[P]. Canada, CA2995870. 2022-11-01.
    [18] BURGARD AP, PHARKYA P, OSTERHOUT RE. Microorganisms for the production of adipic acid and other compounds: US9382556[P]. 2016-07-05.
    [19] BURGARD AP, PHARKYA P, OSTERHOUT RE. Microorganisms for the production of adipic acid and other compounds: US2020248189[P]. 2020-08-06.
    [20] BURGARD AP, PHARKYA P, OSTERHOUT RE. Microorganisms for the production of adipic acid and other compounds: US11293026[P]. 2022-04-05.
    [21] CHEONG S, CLOMBURG JM, GONZALEZ R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions[J]. Nature Biotechnology, 2016, 34(5): 556-561.
    [22] JU JH, OH BR, HEO SY, LEE YU, SHON JH, KIM CH, KIM YM, SEO JW, HONG WK. Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 33-43.
    [23] DENG Y, MAO Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6[J]. Journal of Applied Microbiology, 2015, 119(4): 1057-1063.
    相似文献
    引证文献
引用本文

刘洁,高聪,陈修来,郭亮,宋伟,吴静,魏婉清,刘佳,刘立明. 代谢工程改造大肠杆菌合成己二酸[J]. 生物工程学报, 2023, 39(6): 2375-2389

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-12
  • 录用日期:2023-02-20
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6002294位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司