合成功能菌群的构建及其工程化应用
作者:
基金项目:

国家重点研发计划(2018YFA0903000, 2020YFA0908100);国家自然科学基金(32071427, 32222047);广东省杰出青年基金(2022B1515020077);深圳市科技计划资助(KQTD20180413181837372)


Engineering microbial consortia through synthetic biology approach
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [145]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    自然界中存在着大量的天然微生物群落,不同种群的微生物通过通信及分工拓展了单菌的性能边界,降低了整体的代谢负担并增加了对环境的适应性。合成生物学依据工程设计原理构建或改造基本功能元件、基因线路和底盘细胞,从而对生命的运行过程进行具有目的性的重新编程,获得丰富及可控的生物学功能。将这种工程设计的原理引入菌群,获得结构明确及功能可调的合成群落,可以为合成功能菌群的理论研究到应用提供思路及方法。本文回顾了近年来合成功能菌群领域的相关工作,对合成功能菌群的设计原则、构建方法以及应用进行详细介绍,并对未来的发展进行了展望。

    Abstract:

    There are a large number of natural microbial communities in nature. Different populations inside the consortia expand the performance boundary of a single microbial population through communication and division of labor, reducing the overall metabolic burden and increasing the environmental adaptability. Based on engineering principles, synthetic biology designs or modifies basic functional components, gene circuits, and chassis cells to purposefully reprogram the operational processes of the living cells, achieving rich and controllable biological functions. Introducing this engineering design principle to obtain structurally well-defined synthetic microbial communities can provide ideas for theoretical studies and shed light on versatile applications. This review discussed recent progresses on synthetic microbial consortia with regard to design principles, construction methods and applications, and prospected future perspectives.

    参考文献
    [1] BRENNER K, YOU L, ARNOLD FH. Engineering microbial consortia: a new frontier in synthetic biology[J]. Trends in Biotechnology, 2008, 26(9): 483-489.
    [2] GOERS L, FREEMONT P, POLIZZI KM. Co-culture systems and technologies: taking synthetic biology to the next level[J]. Journal of the Royal Society, Interface, 2014, 11(96): 20140065.
    [3] Greenberg EP. Bacterial communication and group behavior[J]. The Journal of Clinical Investigation, 2003, 112(9): 1288-1290.
    [4] BRENNER K, KARIG DK, WEISS R, ARNOLD FH. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44): 17300-17304.
    [5] TSOI R, WU F, ZHANG C, BEWICK S, KARIG D, YOU L. Metabolic division of labor in microbial systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2526-2531.
    [6] ROELL GW, ZHA J, CARR RR, KOFFAS MA, FONG SS, TANG YJ. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): 35.
    [7] ELOWITZ MB, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.
    [8] GARDNER TS, CANTOR CR, COLLINS JJ. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767): 339-342.
    [9] Ibrahim A, Jacob B, Sonja B, Jeff B, Gaël C, Nikolaos N, Isaac G, Martin H, Paul R, Vinoo S, Noah S, Gonzalo V, Alejandro V. Functional synthetic biology[J]. Synthetic Biology, 2023, 8(1): 76-83.
    [10] Sanka R, Lippai J, Samarasekera D, Nemsick S, Densmore D. 3D muF-interactive design environment for continuous flow microfluidic devices[J]. Scientific Reports, 2019, 9(1): 9166.
    [11] CHEN Y, KIM JK, HIRNING AJ, JOSIĆ K, BENNETT MR, SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989.
    [12] JOHNSTON TG, YUAN SF, WAGNER JM, YI XN, SAHA A, SMITH P, NELSON A, ALPER HS. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation[J]. Nature Communications, 2020, 11: 563.
    [13] Wootton JT. Indirect effects in complex ecosystems: recent progress and future challenges[J]. Journal of Sea Research, 2002, 48(2): 157-172.
    [14] BAIREY E, KELSIC ED, KISHONY R. High-order species interactions shape ecosystem diversity[J]. Nature Communications, 2016, 7: 12285.
    [15] BLANCHARD AE, LU T. Bacterial social interactions drive the emergence of differential spatial colony structures[J]. BMC Systems Biology, 2015, 9(1): 1-13.
    [16] COYTE KZ, SCHLUTER J, FOSTER KR. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261): 663-666.
    [17] BALAGADDÉ FK, SONG H, OZAKI J, COLLINS CH, BARNET M, ARNOLD FH, QUAKE SR, YOU LC. A synthetic Escherichia coli predator-prey ecosystem[J]. Molecular Systems Biology, 2008, 4: 187.
    [18] LIU F, MAO JW, LU T, HUA Q. Synthetic, context-dependent microbial consortium of predator and prey[J]. ACS Synthetic Biology, 2019, 8(8): 1713-1722.
    [19] NAIR RR, VASSE M, WIELGOSS S, SUN L, YU YT N, VELICER GJ. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences[J]. Nature Communications, 2019, 10: 4301.
    [20] GUDELJ I, KINNERSLEY M, RASHKOV P, SCHMIDT K, ROSENZWEIG F. Stability of cross-feeding polymorphisms in microbial communities[J]. PLoS Computational Biology, 2016, 12(12): e1005269.
    [21] KLITGORD N, SEGRÈ D. Environments that induce synthetic microbial ecosystems[J]. PLoS Computational Biology, 2010, 6(11): e1001002.
    [22] BRENNER K, ARNOLD FH. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium[J]. PLoS One, 2011, 6(2): e16791.
    [23] ZHOU K, QIAO KJ, EDGAR S, STEPHANOPOULOS G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383.
    [24] Sanghak C, Hyun GL, Seokmu K, Dong HK, Chae WK, Gyoo YJ. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals[J]. Metabolic Engineering, 2021, 64: 146-153.
    [25] KANG CW, LIM HG, WON J, CHA S, SHIN G, YANG JS, SUNG J, JUNG GY. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production[J]. Nature Communications, 2022, 13: 6506.
    [26] RUTH EL, DANIEL AP, JEFFREY IG. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848.
    [27] EITEMAN MA, LEE SA, ALTMAN R, ALTMAN E. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose[J]. Biotechnology and Bioengineering, 2009, 102(3): 822-827.
    [28] AHMADI MK, FANG L, MOSCATELLO N, PFEIFER BA. E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent[J]. Metabolic Engineering, 2016, 38: 382-388.
    [29] CHEN TT, ZHOU YY, LU YH, ZHANG HR. Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering[J]. Biotechnology Letters, 2019, 41(1): 27-34.
    [30] WANG J, LU XL, YING HX, MA WC, XU S, WANG X, CHEN KQ, OUYANG PK. A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli[J]. Frontiers in Microbiology, 2018, 9: 1312.
    [31] SCOTT SR, DIN MO, BITTIHN P, XIONG L, TSIMRING LS, HASTY J. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis[J]. Nature Microbiology, 2017, 2: 17083.
    [32] VENTURELLI OS, CARR AC, FISHER G, HSU RH, LAU R, BOWEN BP, HROMADA S, NORTHEN T, ARKIN AP. Deciphering microbial interactions in synthetic human gut microbiome communities[J]. Molecular Systems Biology, 2018, 14(6): e8157.
    [33] KONG W, MELDGIN DR, COLLINS JJ, LU T. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8): 821-829.
    [34] MAYFIELD MM, STOUFFER DB. Higher-order interactions capture unexplained complexity in diverse communities[J]. Nature Ecology & Evolution, 2017, 1: 62.
    [35] LAYEGHIFARD M, HWANG DM, GUTTMAN DS. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217-228.
    [36] SENNE dOLF, BAJIC D, VILA J, SÁNCHEZ A, ALEXANDER SM. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation[J]. Nature Communications, 2021, 12: 1498.
    [37] KELSIC ED, ZHAO J, VETSIGIAN K, KISHONY R. Counteraction of antibiotic production and degradation stabilizes microbial communities[J]. Nature, 2015, 521(7553): 516-519.
    [38] GRILLI J, BARABÁS G, MICHALSKA-SMITH MJ, ALLESINA S. Higher-order interactions stabilize dynamics in competitive network models[J]. Nature, 2017, 548(7666): 210-213.
    [39] EMBREE M, LIU JK, ALBASSAM MM, ZENGLER K. Networks of energetic and metabolic interactions define dynamics in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15450-15455.
    [40] FRIEDMAN J, HIGGINS LM, GORE J. Community structure follows simple assembly rules in microbial microcosms[J]. Nature Ecology & Evolution, 2017, 1: 109.
    [41] LINDEMANN SR, BERNSTEIN HC, SONG HS, FREDRICKSON JK, FIELDS MW, SHOU W, JOHNSON DR, BELIAEV AS. Engineering microbial consortia for controllable outputs[J]. The ISME Journal, 2016, 10(9): 2077-2084.
    [42] VENTERS M, CARLSON RP, GEDEON T, HEYS JJ. Effects of spatial localization on microbial consortia growth[J]. PLoS One, 2017, 12(1): e0168592.
    [43] JOHNS NI, BLAZEJEWSKI T, GOMES AL, WANG HH. Principles for designing synthetic microbial communities[J]. Current Opinion in Microbiology, 2016, 31: 146-153.
    [44] KIM HJ, BOEDICKER JQ, CHOI JW, ISMAGILOV RF. Defined spatial structure stabilizes a synthetic multispecies bacterial community[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18188-18193.
    [45] DAI ZJ, LEE AJ, ROBERTS S, SYSOEVA TA, HUANG SQ, DZURICKY M, YANG XY, ZHANG X, LIU ZH, CHILKOTI A, YOU LC. Versatile biomanufacturing through stimulus-responsive cell-material feedback[J]. Nature Chemical Biology, 2019, 15(10): 1017-1024.
    [46] Wang L, Zhang X, Tang Cw, Li Pc, Zhu Rt, Sun J, Zhang Yf, Cui H, Ma Jj, Song Xy, Zhang Ww, Gao X, Luo Xz, You Lc, Chen Y, Dai Zj. Engineering consortia by polymeric microbial swarmbots[J]. Nature Communications, 2022, 13: 3879.
    [47] GUPTA S, ROSS TD, GOMEZ MM, GRANT JL, ROMERO PA, VENTURELLI OS. Investigating the dynamics of microbial consortia in spatially structured environments[J]. Nature Communications, 2020, 11: 2418.
    [48] CONNELL JL, RITSCHDORFF ET, WHITELEY M, SHEAR JB. 3D printing of microscopic bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18380-18385.
    [49] TEI M, PERKINS ML, HSIA J, ARCAK M, ARKIN AP. Designing spatially distributed gene regulatory networks to elicit contrasting patterns[J]. ACS Synthetic Biology, 2019, 8(1): 119-126.
    [50] Wu G, Yan Q, Jones JA, Tang Yj, Fong SS, Koffas MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications[J]. Trends in Biotechnology, 2016, 34(8): 652-664.
    [51] Cayetano PM, Jens P, Axel RH, Arne vH, Henry MW, Jason N, Carino G, Freek M, Guillaume D, Paul BS, Fernanda LP, Maarten HG, Joep B, Tomohiro M, Yi M, Reinier vL, Stefan vE, Genomics ERC, K CG, Janetta T, et al. Co-culture bacteria produce enzymes[J]. Nature, 2020, 580(7802): 269-273.
    [52] DING MZ, SONG H, WANG EX, LIU Y, YUAN YJ. Design and construction of synthetic microbial consortia in China[J]. Synthetic and Systems Biotechnology, 2016, 1(4): 230-235.
    [53] AGAPAKIS CM, BOYLE PM, SILVER PA. Natural strategies for the spatial optimization of metabolism in synthetic biology[J]. Nature Chemical Biology, 2012, 8(6): 527-535.
    [54] Jiang Yj, Guo D, Lu Js, Dürre P, Dong Wl, Yan W, Zhang Wm, Ma Jf, Jiang M, Xin Fx. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5[J]. Biotechnology for Biofuels, 2018, 11(1): 1-14.
    [55] JIANG Y, LV Y, WU R, LU J, DONG W, ZHOU J, ZHANG W, XIN F, JIANG M. Consolidated bioprocessing performance of a two-species microbial consortium for butanol production from lignocellulosic biomass[J]. Biotechnology and Bioengineering, 2020, 117(10): 2985-2995.
    [56] Zhang HR, Wang XN. Modular co-culture engineering, a new approach for metabolic engineering[J]. Metabolic Engineering, 2016, 37: 114-121.
    [57] Xu L, Tschirner U. Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture[J]. Bioresource Technology, 2011, 102(21): 10065-10071.
    [58] TSAI SL, GOYAL G, CHEN W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production[J]. Applied and Environmental Microbiology, 2010, 76(22): 7514-7520.
    [59] GAO Q, YANG JL, ZHAO XR, LIU SC, LIU ZJ, WEI LJ, HUA Q. Yarrowia lipolytica as a metabolic engineering platform for the production of very-long-chain wax esters[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10730-10740.
    [60] PADRI M, BOONTIAN N, TEAUMROONG N, PIROMYOU P, PIASAI C. Co-culture of microalga Chlorella sorokiniana with syntrophic Streptomyces thermocarboxydus in cassava wastewater for wastewater treatment and biodiesel production[J]. Bioresource Technology, 2022, 347: 126732.
    [61] Sahoo TK, Jayaraman G. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate[J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5653-5662.
    [62] SHAHAB RL, BRETHAUER S, DAVEY MP, SMITH AG, VIGNOLINI S, LUTERBACHER JS, STUDER MH. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose[J]. Science, 2020, 369(6507): eabb1214.
    [63] Roy M, Yadav R, Chiranjeevi P, Patil SA. Direct utilization of industrial carbon dioxide with low impurities for acetate production via microbial electrosynthesis[J]. Bioresource Technology, 2021, 320: 124289.
    [64] Li Z, Wang X, Zhang H. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering[J]. Metabolic Engineering, 2019, 54: 1-11.
    [65] URUI M, YAMADA Y, IKEDA Y, NAKAGAWA A, SATO F, MINAMI H, SHITAN N. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production[J]. Microbial Cell Factories, 2021, 20(1): 1-10.
    [66] SCHROECKH V, SCHERLACH K, NÜTZMANN HW, SHELEST E, SCHMIDT-HECK W, SCHUEMANN J, MARTIN K, HERTWECK C, BRAKHAGE AA. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14558-14563.
    [67] PADDON CJ, WESTFALL PJ, PITERA DJ, BENJAMIN K, FISHER K, MCPHEE D, LEAVELL MD, TAI A, MAIN A, ENG D, POLICHUK DR, TEOH KH, REED DW, TREYNOR T, LENIHAN J, JIANG H, FLECK M, BAJAD S, DANG G, DENGROVE D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532.
    [68] FENG J, LI R, ZHANG S, BU YF, CHEN Y, CUI Y, LIN B, CHEN Y, TAO Y, WU B. Bioretrosynthesis of functionalized N-heterocycles from glucose via one-pot tandem collaborations of designed microbes[J]. Advanced Science, 2020, 7(17): 2001188.
    [69] VILLARREAL F, CONTRERAS-LLANO LE, CHAVEZ M, DING Y, FAN J, PAN T, TAN C. Synthetic microbial consortia enable rapid assembly of pure translation machinery[J]. Nature Chemical Biology, 2018, 14(1): 29-35.
    [70] FAN LH, ZHANG ZJ, YU XY, XUE YX, TAN TW. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13260-13265.
    [71] HENGSBACH JN, SABEL-BECKER B, ULBER R, HOLTMANN D. Microbial electrosynthesis of methane and acetate-comparison of pure and mixed cultures[J]. Applied Microbiology and Biotechnology, 2022, 106(12): 4427-4443.
    [72] ANGENENT LT, SCHROEDER U, HARNISCH F. Microbial electrochemistry and technology: terminology and classification[J]. Energy & Environmental Science, 2015, 8(2): 513-519.
    [73] BECSKEI A, SERRANO L. Engineering stability in gene networks by autoregulation[J]. Nature, 2000, 405(6786): 590-593.
    [74] DALCHAU N, SZÉP G, HERNANSAIZ- BALLESTEROS R, BARNES CP, CARDELLI L, PHILLIPS A, CSIKÁSZ-NAGY A. Computing with biological switches and clocks[J]. Natural Computing, 2018, 17(4): 761-779.
    [75] TAMSIR A, TABOR JJ, VOIGT CA. Robust multicellular computing using genetically encoded not gates and chemical ‘wires’[J]. Nature, 2011, 469(7329): 212-215.
    [76] REGOT S, MACIA J, CONDE N, FURUKAWA K, KJELLÉN J, PEETERS T, HOHMANN S, NADAL E, POSAS F, SOLÉ R. Distributed biological computation with multicellular engineered networks[J]. Nature, 2011, 469(7329): 207-211.
    [77] DU P, ZHAO H, ZHANG H, WANG R, HUANG J, TIAN Y, LUO X, LUO X, WANG M, XIANG Y, QIAN L, CHEN Y, TAO Y, LOU C. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation[J]. Nature Communications, 2020, 11: 4226.
    [78] LI X, RIZIK L, KRAVCHIK V, KHOURY M, KORIN N, DANIEL R. Synthetic neural-like computing in microbial consortia for pattern recognition[J]. Nature Communications, 2021, 12: 3139.
    [79] KYLILIS N, TUZA ZA, STAN GB, POLIZZI KM. Tools for engineering coordinated system behaviour in synthetic microbial consortia[J]. Nature Communications, 2018, 9: 2677.
    [80] SCOTT SR, HASTY J. Quorum sensing communication modules for microbial consortia[J]. ACS Synthetic Biology, 2016, 5(9): 969-977.
    [81] SER J, OSABA E, MOLINA D, YANG XS, SALCEDO-SANZ S, CAMACHO D, DAS S, SUGANTHAN PN, COELLO CC, HERRERA F. Bio-inspired computation: where we stand and what’s next[J]. Swarm and Evolutionary Computation, 2019, 48: 220-250.
    [82] Michael TME, André HD. Bio inspired computing-a review of algorithms and scope of applications[J]. Expert Systems with Applications, 2016, 59: 20-32.
    [83] GROZINGER L, AMOS M, GOROCHOWSKI TE, CARBONELL P, OYARZÚN DA, STOOF R, FELLERMANN H, ZULIANI P, TAS H, GOÑI-MORENO A. Pathways to cellular supremacy in biocomputing[J]. Nature Communications, 2019, 10: 5250.
    [84] Zhang Lg, Qiu Xy, Huang L, Xu Jj, Wang Ww, Li Z, Xu P, Tang Hz. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater[J]. Journal of Hazardous Materials, 2021, 419: 126524.
    [85] Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1158-1162.
    [86] SUN XW, CHEN L, LIU C, XU Y, MA W, NI H. Biodegradation of CP/TCP by a constructed microbial consortium after comparative bacterial community analysis of long-term CP domesticated activated sludge[J]. Journal of Environmental Science and Health, Part B, 2020, 55(10): 898-908.
    [87] DENG Y, WANG YL, MAO YP, ZHANG T. Partnership of arthrobacter and pimelobacter in aerobic degradation of sulfadiazine revealed by metagenomics analysis and isolation[J]. Environmental Science & Technology, 2018, 52(5): 2963-2972.
    [88] Kong XX, Jiang JL, Qiao B, Liu H, Cheng JS, Yuan YJ. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways[J]. Science of the Total Environment, 2019, 651: 271-280.
    [89] QI XH, MA Y, CHANG HC, LI BZ, DING MZ, YUAN YJ. Evaluation of PET degradation using artificial microbial consortia[J]. Frontiers in Microbiology, 2021, 12: 778828.
    [90] KALATHIL S, MILLER M, REISNER E. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity[J]. Angewandte Chemie International Edition, 2022, 61(45): 202211057.
    [91] Park SY, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533.
    [92] SYRANIDOU E, KARKANORACHAKI K, AMOROTTI F, REPOUSKOU E, KROLL K, KOLVENBACH B, CORVINI PFX, FAVA F, KALOGERAKIS N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films[J]. PLoS One, 2017, 12(8): e0183984.
    [93] ARAVINTHAN A, ARKATKAR A, JUWARKAR AA, DOBLE M. Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene[J]. Preparative Biochemistry & Biotechnology, 2016, 46(2): 109-115.
    [94] GIACOMUCCI L, RADDADI N, SOCCIO M, LOTTI N, FAVA F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia[J]. Marine Environmental Research, 2020, 158: 104949.
    [95] UTOMO RNC, LI WJ, TISO T, EBERLEIN C, DOEKER M, HEIPIEPER HJ, JUPKE A, WIERCKX N, BLANK LM. Defined microbial mixed culture for utilization of polyurethane monomers[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17466-17474.
    [96] Lambert S, Wagner M. Formation of microscopic particles during the degradation of different polymers[J]. Chemosphere, 2016, 161: 510-517.
    [97] EMMANUEL U, Fonseca. Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells[J]. Bioresource Technology, 2021, 342: 125932.
    [98] Zhu RT, Zhong C, Dai ZJ. Biofilm matrixes-from soft matters to engineered materials[J]. Synthetic Biology Journal, 2022, 3(4): 626-637.
    [99] ZHANG X, LI PC, HUANG JD, DAI ZJ. Application of synthetic biology in living functional materials[J]. Chinese Science Bulletin, 2021, 66(3): 341-346.
    [100] DRAGOŠ A, KIESEWALTER H, MARTIN M, HSU CY, HARTMANN R, WECHSLER T, ERIKSEN C, BRIX S, DRESCHER K, STANLEY-WALL N, KÜMMERLI R, KOVÁCS ÁT. Division of labor during biofilm matrix production[J]. Current Biology, 2018, 28(12): 1903-1913.e5.
    [101] CHEN BZ, KANG W, SUN J, ZHU RT, YU Y, XIA AG, YU M, WANG M, HAN J, CHEN YX, TENG LJ, TIAN Q, YU Y, LI GL, YOU LC, LIU ZY, DAI ZJ. Programmable living assembly of materials by bacterial adhesion[J]. Nature Chemical Biology, 2022, 18(3): 289-294.
    [102] GILBERT C, TANG TC, OTT W, DORR BA, SHAW WM, SUN GL, LU TK, ELLIS T. Living materials with programmable functionalities grown from engineered microbial co-cultures[J]. Nature Materials, 2021, 20(5): 691-700.
    [103] MA ZL, MELIANA C, MUNAWAROH HSH, KARAMAN C, KARIMI-MALEH H, LOW SS, SHOW PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants[J]. Chemosphere, 2022, 306: 135515.
    [104] Gao Gy, Qian J, Fang Dy, Yu Y, Zhi Jf. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium[J]. Analytica Chimica Acta, 2016, 924: 21-28.
    [105] YUDINA NY, ARLYAPOV VA, CHEPURNOVA MA, ALFEROV SV, RESHETILOV AN. A yeast co-culture-based biosensor for determination of waste water contamination levels[J]. Enzyme and Microbial Technology, 2015, 78: 46-53.
    [106] Wang Bj, Barahona M, BuckM. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals[J]. Biosensors and Bioelectronics, 2013, 40(1): 368-376.
    [107] TANG TC, THAM E, LIU XY, YEHL K, ROVNER AJ, YUK H, DELA FUENTE-NUNEZ C, ISAACS FJ, ZHAO XH, LU TK. Hydrogel-based biocontainment of bacteria for continuous sensing and computation[J]. Nature Chemical Biology, 2021, 17(6): 724-731.
    [108] MIMEE M, NADEAU P, HAYWARD A, CARIM S, FLANAGAN S, JERGER L, COLLINS J, McDONNELL S, SWARTWOUT R, CITORIK RJ, BULOVIĆ V, LANGER R, TRAVERSO G, CHANDRAKASAN AP, LU TK. An ingestible bacterial-electronic system to monitor gastrointestinal health[J]. Science, 2018, 360(6391): 915-918.
    [109] DAEFFLER KNM, GALLEY JD, SHETH RU, ORTIZ-VELEZ LC, BIBB CO, SHROYER NF, BRITTON RA, TABOR JJ. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation[J]. Molecular Systems Biology, 2017, 13(4): 923.
    [110] MEYER A, PELLAUX R, POTOT S, BECKER K, HOHMANN HP, PANKE S, HELD M. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors[J]. Nature Chemistry, 2015, 7(8): 673-678.
    [111] SIEDLER S, KHATRI NK, ZSOHÁR A, KJÆRBØLLING I, VOGT M, HAMMAR P, NIELSEN CF, MARIENHAGEN J, SOMMER MOA, JOENSSON HN. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production[J]. ACS Synthetic Biology, 2017, 6(10): 1860-1869.
    [112] QIAN J, LI JM, FANG DY, YU Y, ZHI JF. A disposable biofilm-modified amperometric biosensor for the sensitive determination of pesticide biotoxicity in water[J]. RSC Advances, 2014, 4(98): 55473-55482.
    [113] LI JM, YU Y, QIAN J, WANG Y, ZHANG JH, ZHI JF. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay[J]. Analyst, 2014, 139(11): 2806-2812.
    [114] FANG DY, YU Y, WU LZ, WANG Y, ZHANG JH, ZHI JF. Bacillus subtilis-based colorimetric bioassay for acute biotoxicity assessment of heavy metal ions[J]. RSC Advances, 2015, 5(73): 59472-59479.
    [115] BOURGEOIS W, BURGESS JE, STUETZ RM. On-line monitoring of wastewater quality: a review[J]. Journal of Chemical Technology & Biotechnology, 2001, 76(4): 337-348.
    [116] ARLYAPOV VA, YUDINA NY, ASULYAN LD, ALFEROV SV, ALFEROV VA, RESHETILOV AN. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone[J]. Enzyme and Microbial Technology, 2013, 53(4): 257-262.
    [117] TERRELL JL, TSCHIRHART T, JAHNKE JP, STEPHENS K, LIU Y, DONG H, HURLEY MM, POZO M, MCKAY R, TSAO CY, WU HC, VORA G, PAYNE GF, STRATIS-CULLUM DN, BENTLEY WE. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals[J]. Nature Nanotechnology, 2021, 16(6): 688-697.
    [118] BLAIR JMA, WEBBER MA, BAYLAY AJ, OGBOLU DO, PIDDOCK LJV. Molecular mechanisms of antibiotic resistance[J]. Nature Reviews Microbiology, 2015, 13(1): 42-51.
    [119] VOLZING K, BORRERO J, SADOWSKY MJ, KAZNESSIS YN. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria[J]. ACS Synthetic Biology, 2013, 2(11): 643-650.
    [120] ZHENG DW, CHEN KW, YAN JH, RAO ZY, YANG CH, LI RL, TANG Y, CHENG H, ZHANG XZ. A seed-like hydrogel with metabolic cascade microbiota for oral treatment of liver failure[J]. Materials Today, 2022, 58: 30-40.
    [121] ISABELLA VM, HA BN, CASTILLO MJ, LUBKOWICZ DJ, ROWE SE, MILLET YA, ANDERSON CL, LI N, FISHER AB, WEST KA, REEDER PJ, MOMIN MM, BERGERON CG, GUILMAIN SE, MILLER PF, KURTZ CB, FALB D. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J]. Nature Biotechnology, 2018, 36(9): 857-864.
    [122] ZHENG DW, PAN P, CHEN KW, FAN JX, LI CX, CHENG H, ZHANG XZ. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure[J]. Nature Biomedical Engineering, 2020, 4(9): 853-862.
    [123] KHATER DZ, EL-KHATIB KM, HAZAA MM, HASSAN RYA. Development of bioelectrochemical system for monitoring the biodegradation performance of activated sludge[J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3519-3530.
    [124] LOGAN BE. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381.
    [125] LOGAN BE, HAMELERS B, ROZENDAL R, SCHRÖDER U, KELLER J, FREGUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
    [126] LOGAN BE, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337(6095): 686-690.
    [127] LOVLEY DR. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination[J]. Energy & Environmental Science, 2011, 4(12): 4896-4906.
    [128] KHATER DZ, EL-KHATIB KM, HASSAN RYA. Exploring the bioelectrochemical characteristics of activated sludge using cyclic voltammetry[J]. Applied Biochemistry and Biotechnology, 2018, 184(1): 92-101.
    [129] Yi Y, Xie Bz, Zhao T, Liu H. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism[J]. Bioresource Technology, 2018, 265: 415-421.
    [130] VENKATARAMAN A, ROSENBAUM MA, PERKINS SD, WERNER JJ, ANGENENT LT. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems[J]. Energy & Environmental Science, 2011, 4(11): 4550-4559.[131] ROSENBAUM MA, BAR HY, BEG QK, SEGRÈ D, BOOTH J, COTTA MA, ANGENENT LT. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor[J]. Bioresource Technology, 2011, 102(3):2623-2628.
    [132] WANG VB, SIVAKUMAR K, YANG L, ZHANG QC, KJELLEBERG S, LOO SCJ, CAO B. Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor[J]. Scientific Reports, 2015, 5(1):1-11.
    [133] QU YP, FENG YJ, WANG X, LOGAN BE. Use of a coculture to enable current production by Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2012, 78(9):3484-3487.
    [134] HOWE CJ, BOMBELLI P. Electricity production by photosynthetic microorganisms[J]. Joule, 2020, 4(10):2065-2069.
    [135] WEY LT, BOMBELLI P, CHEN XL, LAWRENCE JM, RABIDEAU CM, ROWDEN SJL, ZHANG JZ, HOWE CJ. The development of biophotovoltaic systems for power generation and biological analysis[J]. ChemElectroChem, 2019, 6(21):5375-5386.
    [136] LIU L, MOHAMMADIFAR M, ELHADAD A, TAHERNIA M, ZHANG YX, ZHAO WF, CHOI S. Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery[J]. Advanced Energy Materials, 2021, 11(22):2100713.
    [137] ZHU HW, MENG HK, ZHANG W, GAO HC, ZHOU J, ZHANG YP, LI Y. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 2019, 10(1):4282.
    [138] ZHU HW, XU LR, LUAN GD, ZHAN T, KANG ZP, LI CL, LU XF, ZHANG XL, ZHU ZG, ZHANG YP, LI Y. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems[J]. Nature Communications, 2022, 13(1):5608.
    [139] GRANDEL NE, REYES GAMAS K, BENNETT MR. Control of synthetic microbial consortia in time, space, and composition[J]. Trends in Microbiology, 2021, 29(12):1095-1105.
    [140] ZHENG LG, TAN Y, HU Y, SHEN JT, QU ZP, CHEN XB, HO CL, LEUNG ELH, ZHAO W, DAI L. CRISPR/Cas-based genome editing for human gut commensal Bacteroides species[J]. ACS Synthetic Biology, 2022, 11(1):464-472.
    [141] LAGIER JC, DUBOURG G, MILLION M, CADORET F, BILEN M, FENOLLAR F, LEVASSEUR A, ROLAIN JM, FOURNIER PE, RAOULT D. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16(9):540-550.
    [142] CHENG AG, HO PY, ARANDA-DÍAZ A, JAIN S, YU FB, MENG X, WANG M, IAKIVIAK M, NAGASHIMA K, ZHAO A, MURUGKAR P, PATIL A, ATABAKHSH K, WEAKLEY A, YAN J, BRUMBAUGH AR, HIGGINBOTTOM S, DIMAS A, SHIVER AL, DEUTSCHBAUER A, et al. Design, construction, and in vivo augmentation of a complex gut microbiome[J]. Cell, 2022, 185(19):3617-3636.
    [143] JIN WB, LI TT, HUO D, QU S, LI X, ARIFUZZAMAN M, LIMA SF, SHI HQ, WANG AL, PUTZEL GG, LONGMAN RS, ARTIS D, GUO CJ. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome[J]. Cell, 2022, 185(3):547-562.
    [144] ZHANG L, CHEN L, DIAO JJ, SONG XY, SHI ML, ZHANG WW. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2[J]. Biotechnology for Biofuels, 2020, 13:1-14.
    [145] HAYS SG, YAN LLW, SILVER PA, DUCAT DC. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction[J]. Journal of Biological Engineering, 2017, 11:1-14.
    [146] LI C, WANG R, WANG J, LIU L, LI H, ZHENG H, NI J. A highly compatible phototrophic community for carbon-negative biosynthesis[J]. Angewandte Chemie International Edition, 2023, 62(2):e202215013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张娇,陈江峰,陈奕璇,戴磊,戴卓君. 合成功能菌群的构建及其工程化应用[J]. 生物工程学报, 2023, 39(6): 2517-2545

复制
分享
文章指标
  • 点击次数:811
  • 下载次数: 1767
  • HTML阅读次数: 1585
  • 引用次数: 0
历史
  • 收稿日期:2023-01-31
  • 录用日期:2023-06-21
  • 在线发布日期: 2023-06-20
  • 出版日期: 2023-06-25
文章二维码
您是第6015494位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司