Abstract:Tyrosol is a natural polyphenolic product that is widely used in chemical, pharmaceutical and food industries. Currently, the de novo synthesis of tyrosol by Escherichia coli suffers from issues such as low cell density and poor yield. Therefore, the phenylpyruvate decarboxylase mutant ARO10F138L/D218G obtained in our previous study was fused with an alcohol dehydrogenase from different microorganisms for fusion expression, and the optimal ARO10F138L/D218G-L-YahK produced 1.09 g/L tyrosol in shake flasks. In order to further improve tyrosol production, feaB, a key gene in the competing pathway of 4-hydroxyphenylacetic acid, was knocked out, and the resulted strain produced 1.26 g/L tyrosol with an increase of 21.15% compared to that of the control. To overcome the low cell density in tyrosol fermentation, the quorum-sensing circuit was used to dynamically regulate the tyrosol synthesis pathway, so as to alleviate the toxic effect of tyrosol on chassis cells and relieve the growth inhibition. Using this strategy, the yield of tyrosol was increased to 1.74 g/L, a 33.82% increase. In a 2 L fermenter, the production of tyrosol in the engineered strain TRFQ5 dynamically regulated by quorum-sensing reached 4.22 g/L with an OD600 of 42.88. Compared with those in the engineered strain TRF5 statically regulated by induced expression, the yield was increased by 38.58% and the OD600 was enhanced by 43.62%. The combination of blocking the competing pathway using gene knockout technology, and reducing the inhibitory effect of tyrosol toxicity on chassis cells through quorum-sensing dynamic regulation increased the production of tyrosol. This study may facilitate the biosynthesis of other chemicals with high toxicity.