共表达IL-15和CCL19的EGFRvⅢ CAR-T细胞的构建和功能探究
作者:
基金项目:

泉州市科技计划项目(2021N130S);泉州医学高等专科学校校级青年科技课题(XJK2015B)


Construction and functional analysis of EGFRvIII CAR-T cells co-expressing IL-15 and CCL19
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究分析了共表达白细胞介素-15 (interleukin-15, IL-15)和趋化因子配体19 (C-C chemokine ligand 19, CCL19)的EGFRvⅢ CAR-T细胞的功能特性及其体外特异性杀伤效果,旨在优化CAR-T细胞多项功能,提高靶向EGFRvⅢ 的CAR-T细胞对胶质母细胞瘤(glioblastoma, GBM)的治疗效果。通过基因工程技术获得重组慢病毒质粒,转染293T细胞获得慢病毒并感染T细胞获得靶向EGFRvⅢ的第四代CAR-T细胞(EGFRvⅢ-IL-15-CCL19 CAR-T)。利用流式细胞仪、细胞计数仪、趋化小室、凋亡试剂盒等检测了第四代和第二代CAR-T细胞(EGFRvⅢ CAR-T)的CAR分子表达率、增殖、趋化能力、体外特异性杀伤能力及抗凋亡能力等。结果表明,与EGFRvⅢ CAR-T细胞相比,EGFRvⅢ-IL-15-CCL19 CAR-T细胞能成功分泌IL-15和CCL19,具有更强的体外增殖能力、趋化能力以及抗凋亡能力(P值均<0.05),而体外特异性杀伤能力无显著差异。因此,靶向EGFRvⅢ且同时分泌IL-15和CCL19的CAR-T细胞有望提高胶质母细胞瘤的治疗效果,为临床试验提供一定的参考依据。

    Abstract:

    The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P<0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.

    参考文献
    [1] CHINOT OL, WICK W, MASON W, HENRIKSSON R, SARAN F, NISHIKAWA R, CARPENTIER AF, HOANG-XUAN K, KAVAN P, CERNEA D, BRANDES AA, HILTON M, ABREY L, CLOUGHESY T. Bevacizumab plus radiotherapy- temozolomide for newly diagnosed glioblastoma[J]. New England Journal of Medicine, 2014, 370(8):709-722.
    [2] STUPP R, MASON WP, van den BENT MJ, WELLER M, FISHER B, TAPHOORN MJB, BELANGER K, BRANDES AA, MAROSI C, BOGDAHN U, CURSCHMANN J, JANZER RC, LUDWIN SK, GORLIA T, ALLGEIER A, LACOMBE D, CAIRNCROSS JG, EISENHAUER E, MIRIMANOFF RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. New England Journal of Medicine, 2005, 352(10):987-996.
    [3] OSTROM QT, BAUCHET L, DAVIS FG, DELTOUR I, FISHER JL, LANGER CE, PEKMEZCI M, SCHWARTZBAUM JA, TURNER MC, WALSH KM, WRENSCH MR, BARNHOLTZ-SLOAN JS. The epidemiology of glioma in adults:a "state of the science" review[J]. Neuro-Oncology, 2014, 16(7):896-913.
    [4] TURTLE CJ, HUDECEK M, JENSEN MC, RIDDELL SR. Engineered T cells for anti-cancer therapy[J]. Current Opinion in Immunology, 2012, 24(5):633-639.
    [5] YING ZT, HUANG XF, XIANG XY, LIU YL, KANG X, SONG YQ, GUO XK, LIU HZ, DING N, ZHANG TT, DUAN PP, LIN YF, ZHENG W, WANG XP, LIN NJ, TU MF, XIE Y, ZHANG C, LIN WP, DENG LJ, et al. A safe and potent anti-CD19 CAR T cell therapy[J]. Nature Medicine, 2019, 25(6):947-953.
    [6] HU YX, ZHOU YL, ZHANG MM, GE WG, LI Y, YANG L, WEI GQ, HAN L, WANG H, YU SH, CHEN Y, WANG YB, HE XH, ZHANG XW, GAO M, YANG JJ, LI XJ, REN JT, HUANG H. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Clinical Cancer Research, 2021, 27(10):2764-2772.
    [7] TURTLE CJ, HANAFI LA, BERGER C, GOOLEY TA, CHERIAN S, HUDECEK M, SOMMERMEYER D, MELVILLE K, PENDER B, BUDIARTO TM, ROBINSON E, STEEVENS NN, CHANEY C, SOMA L, CHEN XY, YEUNG C, WOOD B, LI D, CAO JH, HEIMFELD S, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients[J]. Journal of Clinical Investigation, 2016, 126(6):2123-2138.
    [8] FESNAK AD, JUNE CH, LEVINE BL. Engineered T cells:the promise and challenges of cancer immunotherapy[J]. Nature Reviews Cancer, 2016, 16(9):566-581.
    [9] MOON EK, WANG LC, DOLFI DV, WILSON CB, RANGANATHAN R, SUN J, KAPOOR V, SCHOLLER J, PURÉ E, MILONE MC, JUNE CH, RILEY JL, WHERRY EJ, ALBELDA SM. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J]. Clinical Cancer Research, 2014, 20(16):4262-4273.
    [10] SCHLEGEL J, MERDES A, STUMM G, ALBERT FK, FORSTING M, HYNES N, KIESSLING M. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma[J]. International Journal of Cancer, 2007, 56(1):72-77.
    [11] EKSTRAND AJ, JAMES CD, CAVENEE WK, SELIGER B, PETTERSSON RF, COLLINS VP. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo[J]. Cancer Research, 1991, 51(8):2164-2172.
    [12] HUMPHREY PA, WONG AJ, VOGELSTEIN B, ZALUTSKY MR, FULLER GN, ARCHER GE, FRIEDMAN HS, KWATRA MM, BIGNER SH, BIGNER DD. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(11):4207-4211.
    [13] YAMAZAKI H, OHBA Y, TAMAOKI N, SHIBUYA M. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors[J]. Japanese Journal of Cancer Research, 1990, 81(8):773-779.
    [14] WIKSTRAND C, REIST CJ, ARCHER GE, ZALUTSKY MR, BIGNER DD. The class Ⅲ variant of the epidermal growth factor receptor (EGFRvIII):characterization and utilization as an immunotherapeutic target[J]. Journal of Neurovirology, 1998, 4(2):148-158.
    [15] JOHNSON LA, SCHOLLER J, OHKURI T, KOSAKA A, PATEL PR, McGETTIGAN SE, NACE AK, DENTCHEV T, THEKKAT P, LOEW A, BOESTEANU AC, COGDILL AP, CHEN T, FRAIETTA JA, KLOSS CC, POSEY AD Jr, ENGELS B, SINGH R, EZELL T, IDAMAKANTI N, et al. Rational development and characterization of humanized anti-EGFR variant Ⅲ chimeric antigen receptor T cells for glioblastoma[J]. Science Translational Medicine, 2015, 7(275):eaaa4963.
    [16] GOFF SL, MORGAN RA, YANG JC, SHERRY RM, ROBBINS PF, RESTIFO NP, FELDMAN SA, LU YC, LU L, ZHENG ZL, XI LQ, EPSTEIN M, McINTYRE LS, MALEKZADEH P, RAFFELD M, FINE HA, ROSENBERG SA. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma[J]. Journal of Immunotherapy, 2019, 42(4):126-135.
    [17] ABBOTT RC, VERDON DJ, GRACEY FM, HUGHES-PARRY HE, ILIOPOULOS M, WATSON KA, MULAZZANI M, LUONG K, D'ARCY C, SULLIVAN LC, KIEFEL BR, CROSS RS, JENKINS MR. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma[J]. Clinical & Translational Immunology, 2021, 10(5):e1283.
    [18] NAGANE M, COUFAL F, LIN H, BÖGLER O, CAVENEE WK, HUANG HJ. A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis[J]. Cancer Research, 1996, 56(21):5079-5086.
    [19] 刘君, 谢深霞, 李海霞, 施维, 姜晓兵, 王旋, 杨晓梅, 卢小玲. 靶向EGFRvⅢ免疫疗法在胶质母细胞瘤治疗的研究进展[J]. 药学学报, 2022, 57(9):2662-2670.LIU J, XIE SX, LI HX, SHI W, JIANG XB, WANG X, YANG XM, LU XL. Research progress of EGFRvⅢ targeted immunotherapy in the treatment of glioblastoma[J]. Acta Pharmaceutica Sinica, 2022, 57(9):2662-2670(in Chinese).
    [20] FEHNIGER TA, CALIGIURI MA. Interleukin 15:biology and relevance to human disease[J]. Blood, 2001, 97(1):14-32.
    [21] WALDMANN TA, TAGAYA Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in nk cell differentiation and host response to intracellular pathogens[J]. Annual Review of Immunology, 1999, 17:19-49.
    [22] KOKAJI AI, HOCKLEY DL, KANE KP. IL-15 transpresentation augments CD8+ T cell activation and is required for optimal recall responses by central memory CD8+ T cells[J]. The Journal of Immunology, 2008, 180(7):4391-4401.
    [23] YOSHIDA R, NAGIRA M, IMAI T, BABA M, TAKAGI S, TABIRA Y, AKAGI J, NOMIYAMA H, YOSHIE O. EBI1-ligand chemokine (ELC) attracts a broad spectrum of lymphocytes:activated T cells strongly up-regulate CCR7 and efficiently migrate toward ELC[J]. International Immunology, 1998, 10(7):901-910.
    [24] KELLERMANN SA, HUDAK S, OLDHAM ER, LIU YJ, McEVOY LM. The CC chemokine receptor-7 ligands 6C kine and macrophage inflammatory protein-3β are potent chemoattractants for in vitro-and in vivo-derived dendritic cells[J]. The Journal of Immunology, 1999, 162(7):3859-3864.
    [25] MARIGO I, DOLCETTI L, SERAFINI P, ZANOVELLO P, BRONTE V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells[J]. Immunological Reviews, 2008, 222(1):162-179.
    [26] YU SN, LI AP, LIU Q, LI TF, YUAN X, HAN XW, WU KM. Chimeric antigen receptor T cells:a novel therapy for solid tumors[J]. Journal of Hematology & Oncology, 2017, 10(1):1-13.
    [27] ADACHI K, KANO Y, NAGAI T, OKUYAMA N, SAKODA Y, TAMADA K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nature Biotechnology, 2018, 36(4):346-351.
    [28] GE H, GONG XQ, TANG CK. Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis[J]. International Journal of Cancer, 2002, 98(3):357-361.
    [29] OKAMOTO I, KENYON LC, EMLET DR, MORI T, SASAKI JI, HIROSAKO S, ICHIKAWA Y, KISHI H, GODWIN AK, YOSHIOKA M, SUGA M, MATSUMOTO M, WONG AJ. Expression of constitutively activated EGFRvlll in non-small cell lung cancer[J]. Cancer Science, 2003, 94(1):50-56.
    [30] WU JL, ABE T, INOUE R, FUJIKI M, KOBAYASHI H. IκBαM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells[J]. Neurological Research, 2004, 26(7):785-791.
    [31] YU H, GONG XQ, LUO XY, HAN W, HONG G, SINGH B, TANG CK. Co-expression of EGFRvIII with ErbB-2 enhances tumorigenesis:EGFRvIII mediated constitutively activated and sustained signaling pathways, whereas EGF-induced a transient effect on EGFR-mediated signaling pathways[J]. Cancer Biology & Therapy, 2008, 7(11):1818-1828.
    [32] JI HB, ZHAO XJ, YUZA Y, SHIMAMURA T, LI DN, PROTOPOPOV A, JUNG BL, McNAMARA K, XIA HL, GLATT KA, THOMAS RK, SASAKI H, HORNER JW, ECK M, MITCHELL A, SUN YP, AL-HASHEM R, BRONSON RT, RABINDRAN SK, DISCAFANI CM, et al. Epidermal growth factor receptor variant Ⅲ mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(20):7817-7822.
    [33] ZEINELDIN R, ROSENBERG M, ORTEGA D, BUHR C, CHAVEZ MG, STACK MS, KUSEWITT DF, HUDSON LG. Mesenchymal transformation in epithelial ovarian tumor cells expressing epidermal growth factor receptor variant Ⅲ[J]. Molecular Carcinogenesis, 2006, 45(11):851-860.
    [34] PATIDAR M, YADAV N, DALAI SK. Interleukin 15:a key cytokine for immunotherapy[J]. Cytokine & Growth Factor Reviews, 2016, 31:49-59.
    [35] HOYOS V, SAVOLDO B, QUINTARELLI C, MAHENDRAVADA A, ZHANG M, VERA J, HESLOP HE, ROONEY CM, BRENNER MK, DOTTI G. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety[J]. Leukemia, 2010, 24(6):1160-1170.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈婉琼,咸娜,林少梅,廖婉婷,陈明珠. 共表达IL-15和CCL19的EGFRvⅢ CAR-T细胞的构建和功能探究[J]. 生物工程学报, 2023, 39(9): 3787-3799

复制
分享
文章指标
  • 点击次数:201
  • 下载次数: 855
  • HTML阅读次数: 718
  • 引用次数: 0
历史
  • 收稿日期:2023-01-06
  • 录用日期:2023-03-03
  • 在线发布日期: 2023-09-28
  • 出版日期: 2023-09-25
文章二维码
您是第6005787位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司