以T细胞受体为基础的免疫疗法研究进展
作者:
基金项目:

国家自然科学基金(32222031)


T cell receptor-based immunotherapy: a review
Author:
  • CHEN Yuan

    CHEN Yuan

    Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, Guangxi, China;Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO George F.

    GAO George F.

    Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, Guangxi, China;Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TAN Shuguang

    TAN Shuguang

    Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [107]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    T细胞是机体抗肿瘤免疫的核心,以T细胞功能调控为基础的免疫检查点疗法已经在多种肿瘤的临床治疗中取得了重大突破,以基因工程化T细胞为基础的过继性免疫细胞疗法在血液瘤治疗中取得了重要进展,免疫治疗已经对肿瘤的临床治疗产生了深刻变革,成为肿瘤临床治疗策略的重要组成部分。T细胞受体(T cell receptor,TCR)赋予了T细胞识别肿瘤抗原的特异性,能够识别由主要组织相容性复合体(major histocompatibility complex,MHC)呈递的包括胞内抗原在内的广泛肿瘤抗原,具有高度的抗原敏感性,因而具有广泛的抗肿瘤应用前景。2022年第一款TCR药物的上市开启了TCR药物开发的新纪元,多项TCR药物临床研究表现出潜在的肿瘤治疗价值。本文综述了以TCR为基础的免疫治疗策略研究进展,包括T细胞受体工程化T细胞(T cell receptor-engineered T cell,TCR-T)和TCR蛋白药物,以及基于TCR信号的其他免疫细胞疗法,以期为以TCR为基础的免疫治疗策略开发提供参考。

    Abstract:

    T cells play central roles in anti-tumor immune responses. Immune checkpoint therapy, which is based on modulation of T cell reactivity, has achieved breakthrough in clinical treatment of multiple tumors. Moreover, adoptive T cell therapy, which includes mainly genetically engineered T cells, has shown substantial treatment efficacy in hematoma. Immune therapy has tremendously changed the scenario of clinical tumor treatment and become critical strategies for treating multiple tumors. T cell receptor (TCR) is the fundamental molecule responsible for the specificity of T cell recognition. TCRs could recognize peptides, which are derived from intracellular or extracellular tumor antigens, presented by major histocompatibility complex (MHC) and are therefore highly sensitive to low antigen level. Thereby, TCRs are broadly recognized as promising molecules for the development of anti-tumor drugs. The approval of the first TCR drug in 2022 has initiated a new era for TCR-based therapeutics and since then, multiple TCR drugs have shown substantial treatment efficacy in multiple tumors. This review summarizes the progress of TCR-based immune therapeutic strategies, including T cell receptor-engineered T cell (TCR-T), TCR-based protein drugs, and other cell therapies based on TCR signaling, providing useful information for future design of immune therapeutics based on TCR.

    参考文献
    [1] SUNG H, FERLAY J, SIEGEL RL, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a Cancer Journal for Clinicians, 2021, 71(3):209-249.
    [2] BARBARI C, FONTAINE T, PARAJULI P, LAMICHHANE N, JAKUBSKI S, LAMICHHANE P, DESHMUKH RR. Immunotherapies and combination strategies for immuno-oncology[J]. International Journal of Molecular Sciences, 2020, 21(14):5009.
    [3] CHANDRAN SS, KLEBANOFF CA. T cell receptor-based cancer immunotherapy:emerging efficacy and pathways of resistance[J]. Immunological Reviews, 2019, 290(1):127-147.
    [4] EBERLEIN TJ, ROSENSTEIN M, ROSENBERG SA. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2[J]. The Journal of Experimental Medicine, 1982, 156(2):385-397.
    [5] ROSENBERG SA, SPIESS P, LAFRENIERE R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes[J]. Science, 1986, 233(4770):1318-1321.
    [6] TOPALIAN SL, SOLOMON D, AVIS FP, CHANG AE, FREERKSEN DL, LINEHAN WM, LOTZE MT, ROBERTSON CN, SEIPP CA, SIMON P. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2:a pilot study[J]. Journal of Clinical Oncology, 1988, 6(5):839-853.
    [7] KIRTANE K, ELMARIAH H, CHUNG CH, ABATE-DAGA D. Adoptive cellular therapy in solid tumor malignancies:review of the literature and challenges ahead[J]. Journal for Immunotherapy of Cancer, 2021, 9(7):e002723.
    [8] GAO GF, JAKOBSEN BK. Molecular interactions of coreceptor CD8 and MHC class I:the molecular basis for functional coordination with the T-cell receptor[J]. Immunology Today, 2000, 21(12):630-636.
    [9] GAO GF, RAO ZH, BELL JI. Molecular coordination of αβ T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands[J]. Trends in Immunology, 2002, 23(8):408-413.
    [10] CHRUŚCIEL E, URBAN-WÓJCIUK Z, ARCIMOWICZ Ł, KURKOWIAK M, KOWALSKI J, GLIWIŃSKI M, MARJAŃSKI T, RZYMAN W, BIERNAT W, DZIADZIUSZKO R, MONTESANO C, BERNARDINI R, MAREK-TRZONKOWSKA N. Adoptive cell therapy-harnessing antigen-specific T cells to target solid tumours[J]. Cancers (Basel), 2020, 12(3):683.
    [11] LAND CA, MUSICH PR, HAYDAR D, KRENCIUTE G, XIE Q. Chimeric antigen receptor T-cell therapy in glioblastoma:charging the T cells to fight[J]. Journal of Translational Medicine, 2020, 18(1):428.
    [12] HU Y, FENG J, GU T, WANG L, WANG Y, ZHOU L, HONG R, TAN SU YIN E, ZHANG M, LU P, HUANG H. CAR T-cell therapies in China:rapid evolution and a bright future[J]. Lancet Haematology, 2022, 9(12):e930-e941.
    [13] DAMATO BE, DUKES J, GOODALL H, CARVAJAL RD. Tebentafusp:T cell redirection for the treatment of metastatic uveal melanoma[J]. Cancers (Basel), 11(7):971.
    [14] HE QH, JIANG XH, ZHOU XK, WENG JS. Targeting cancers through TCR-peptide/MHC interactions[J]. Journal of Hematology & Oncology, 2019, 12(1):139.
    [15] TITOV A, ZMIEVSKAYA E, GANEEVA I, VALIULLINA A, PETUKHOV A, RAKHMATULLINA A, MIFTAKHOVA R, FAINSHTEIN M, RIZVANOV A, BULATOV E. Adoptive immunotherapy beyond CAR T-cells[J]. Cancers (Basel), 2021, 13(4):743.
    [16] la GRUTA NL, GRAS S, DALEY SR, THOMAS PG, ROSSJOHN J. Understanding the drivers of MHC restriction of T cell receptors[J]. Nature Reviews Immunology, 2018, 18(7):467-478.
    [17] SUN YM, LI FG, SONNEMANN H, JACKSON KR, TALUKDER AH, KATAILIHA AS, LIZEE G. Evolution of CD8+ T cell receptor (TCR) engineered therapies for the treatment of cancer[J]. Cells, 2021, 10(9):2379.
    [18] PISHESHA N, HARMAND TJ, PLOEGH HL. A guide to antigen processing and presentation[J]. Nature Reviews Immunology, 2022, 22(12):751-764.
    [19] RATH JA, ARBER C. Engineering strategies to enhance TCR-based adoptive T cell therapy[J]. Cells, 2020, 9(6):1485.
    [20] JIANG WQ, HE YJ, HE WG, WU GS, ZHOU XL, SHENG QS, ZHONG WX, LU YM, DING YF, LU Q, YE F, HUA HJ. Exhausted CD8+ T cells in the tumor immune microenvironment:new pathways to therapy[J]. Frontiers in Immunology, 2020, 11:622509.
    [21] HAO XP, SUN GS, ZHANG Y, KONG XY, RONG DW, SONG JH, TANG WW, WANG XH. Targeting immune cells in the tumor microenvironment of HCC:new opportunities and challenges[J]. Frontiers in Cell and Developmental Biology, 2021, 9:775462.
    [22] FARHOOD B, NAJAFI M, MORTEZAEE K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy:a review[J]. Journal of Cellular Physiology, 2019, 234(6):8509-8521.
    [23] JHUNJHUNWALA S, HAMMER C, DELAMARRE L. Antigen presentation in cancer:insights into tumour immunogenicity and immune evasion[J]. Nature Reviews Cancer, 2021, 21(5):298-312.
    [24] DONG D, ZHENG LQ, LIN JQ, ZHANG BL, ZHU YW, LI NN, XIE SY, WANG YH, GAO N, HUANG ZW. Structural basis of assembly of the human T cell receptor-CD3 complex[J]. Nature, 2019, 573(7775):546-552.
    [25] REINHERZ EL. αβ TCR-mediated recognition:relevance to tumor-antigen discovery and cancer immunotherapy[J]. Cancer Immunology Research, 2015, 3(4):305-312.
    [26] ALCOVER A, ALARCÓN B, DI BARTOLO V. Cell biology of T cell receptor expression and regulation[J]. Annual Review of Immunology, 2018, 36:103-125.
    [27] GREENBAUM U, DUMBRAVA EI, BITER AB, HAYMAKER CL, HONG DS. Engineered T-cell receptor T cells for cancer immunotherapy[J]. Cancer Immunology Research, 2021, 9(11):1252-1261.
    [28] GAUD G, LESOURNE R, LOVE PE. Regulatory mechanisms in T cell receptor signalling[J]. Nature Reviews Immunology, 2018, 18(8):485-497.
    [29] SHAH K, AL-HAIDARI A, SUN JM, KAZI JU. T cell receptor (TCR) signaling in health and disease[J]. Signal Transduction and Targeted Therapy, 2021, 6:412.
    [30] RESTIFO NP, DUDLEY ME, ROSENBERG SA. Adoptive immunotherapy for cancer:harnessing the T cell response[J]. Nature Reviews Immunology, 2012, 12(4):269-281.
    [31] MET Ö, JENSEN KM, CHAMBERLAIN CA, DONIA M, SVANE IM. Principles of adoptive T cell therapy in cancer[J]. Seminars in Immunopathology, 2019, 41(1):49-58.
    [32] JIANG XT, XU J, LIU MF, XING H, WANG ZM, HUANG L, MELLOR AL, WANG W, WU S. Adoptive CD8+ T cell therapy against cancer:challenges and opportunities[J]. Cancer Letters, 2019, 462:23-32.
    [33] ZHAO QJ, JIANG Y, XIANG SX, KABOLI PJ, SHEN J, ZHAO YS, WU X, DU FK, LI MX, CHO CH, LI J, WEN QL, LIU T, YI T, XIAO ZG. Engineered TCR-T cell immunotherapy in anticancer precision medicine:pros and cons[J]. Frontiers in Immunology, 2021, 12:658753.
    [34] HUPPA JB, SCHÜTZ GJ. T-cell antigen recognition:catch-as-catch-can or catch-22?[J]. The EMBO Journal, 2023, 42(7):e113507.
    [35] GAISSMAIER L, ELSHIATY M, CHRISTOPOULOS P. Breaking bottlenecks for the TCR therapy of cancer[J]. Cells, 2020, 9(9):2095.
    [36] WILLCOX BE, GAO GF, WYER JR, LADBURY JE, BELL JI, JAKOBSEN BK, van der MERWE PA. TCR binding to peptide-MHC stabilizes a flexible recognition interface[J]. Immunity, 1999, 10(3):357-365.
    [37] ClinicalTrials.gov[DB/OL].[2023-02-27]. https://clinicaltrials.gov/.
    [38] CLAY TM, CUSTER MC, SACHS J, HWU P, ROSENBERG SA, NISHIMURA MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity[J]. The Journal of Immunology, 1999, 163(1):507-513.
    [39] MORGAN RA, DUDLEY ME, WUNDERLICH JR, HUGHES MS, YANG JC, SHERRY RM, ROYAL RE, TOPALIAN SL, KAMMULA US, RESTIFO NP, ZHENG ZL, NAHVI A, de VRIES CR, ROGERS-FREEZER LJ, MAVROUKAKIS SA, ROSENBERG SA. Cancer regression in patients after transfer of genetically engineered lymphocytes[J]. Science, 2006, 314(5796):126-129.
    [40] CHODON T, COMIN-ANDUIX B, CHMIELOWSKI B, KOYA RC, WU ZQ, AUERBACH M, NG C, AVRAMIS E, SEJA E, VILLANUEVA A, MCCANNEL TA, ISHIYAMA A, CZERNIN J, RADU CG, WANG XY, GJERTSON DW, COCHRAN AJ, CORNETTA K, WONG DJL, KAPLAN-LEFKO P, et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2014, 20(9):2457-2465.
    [41] ROBBINS PF, MORGAN RA, FELDMAN SA, YANG JC, SHERRY RM, DUDLEY ME, WUNDERLICH JR, NAHVI AV, HELMAN LJ, MACKALL CL, KAMMULA US, HUGHES MS, RESTIFO NP, RAFFELD M, LEE CC R, LEVY CL, LI YF, EL-GAMIL M, SCHWARZ SL, LAURENCOT C, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2011, 29(7):917-924.
    [42] ROBBINS PF, KASSIM SH, TRAN TLN, CRYSTAL JS, MORGAN RA, FELDMAN SA, YANG JC, DUDLEY ME, WUNDERLICH JR, SHERRY RM, KAMMULA US, HUGHES MS, RESTIFO NP, RAFFELD M, LEE CC R, LI YF, EL-GAMIL M, ROSENBERG SA. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor:long-term follow-up and correlates with response[J]. Clinical Cancer Research, 2015, 21(5):1019-1027.
    [43] D'ANGELO SP, MELCHIORI L, MERCHANT MS, BERNSTEIN D, GLOD J, KAPLAN R, GRUPP S, TAP WD, CHAGIN K, BINDER GK, BASU S, LOWTHER DE, WANG RX, BATH N, TIPPING A, BETTS G, RAMACHANDRAN I, NAVENOT JM, ZHANG H, WELLS DK, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1c259T cells in synovial sarcoma[J]. Cancer Discovery, 2018, 8(8):944-957.
    [44] SAN MIGUEL JF, PAIVA B, LASARTE JJ. Engineering anti-myeloma responses using affinity-enhanced TCR-engineered T cells[J]. Cancer Cell, 2015, 28(3):281-283.
    [45] RAPOPORT AP, STADTMAUER EA, BINDER-SCHOLL GK, GOLOUBEVA O, VOGL DT, LACEY SF, BADROS AZ, GARFALL A, WEISS B, FINKLESTEIN J, KULIKOVSKAYA I, SINHA SK, KRONSBERG S, GUPTA M, BOND S, MELCHIORI L, BREWER JE, BENNETT AD, GERRY AB, PUMPHREY NJ, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma[J]. Nature Medicine, 2015, 21(8):914-921.
    [46] CHAPUIS AG, EGAN DN, BAR M, SCHMITT TM, MCAFEE MS, PAULSON KG, VOILLET V, GOTTARDO R, RAGNARSSON GB, BLEAKLEY M, YEUNG CC, MUHLHAUSER P, NGUYEN HN, KROPP LA, CASTELLI L, WAGENER F, HUNTER D, LINDBERG M, COHEN K, SEESE A, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant[J]. Nature Medicine, 2019, 25(7):1064-1072.
    [47] HONG DS, van TINE BA, BISWAS S, MCALPINE C, JOHNSON ML, OLSZANSKI AJ, CLARKE JM, ARAUJO D, BLUMENSCHEIN GR JR, KEBRIAEI P, LIN Q, TIPPING AJ, SANDERSON JP, WANG RX, TRIVEDI T, ANNAREDDY T, BAI J, RAFAIL S, SUN A, FERNANDES L, et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients:a phase 1 trial[J]. Nature Medicine, 2023, 29(1):104-114.
    [48] SANDERSON JP, CROWLEY DJ, WIEDERMANN GE, QUINN LL, CROSSLAND KL, TUNBRIDGE HM, CORNFORTH TV, BARNES CS, AHMED T, HOWE K, SAINI M, ABBOTT RJ, ANDERSON VE, TAVANO B, MAROTO M, GERRY AB. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy[J]. OncoImmunology, 2020, 9(1):1682381.
    [49] MORGAN RA, CHINNASAMY N, ABATE-DAGA D, GROS A, ROBBINS PF, ZHENG ZL, DUDLEY ME, FELDMAN SA, YANG JC, SHERRY RM, PHAN GQ, HUGHES MS, KAMMULA US, MILLER AD, HESSMAN CJ, STEWART AA, RESTIFO NP, QUEZADO MM, ALIMCHANDANI M, ROSENBERG AZ, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy[J]. Journal of Immunotherapy (Hagerstown, Md:1997), 2013, 36(2):133-151.
    [50] LU YC, PARKER LL, LU TY, ZHENG ZL, TOOMEY MA, WHITE DE, YAO X, LI YF, ROBBINS PF, FELDMAN SA, van der BRUGGEN P, KLEBANOFF CA, GOFF SL, SHERRY RM, KAMMULA US, YANG JC, ROSENBERG SA. Treatment of patients with metastatic cancer using a major histocompatibility complex class Ⅱ-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3[J]. Journal of Clinical Oncology, 2017, 35(29):3322-3329.
    [51] YAO X, LU YC, PARKER LL, LI YF, EL-GAMIL M, BLACK MA, XU H, FELDMAN SA, van der BRUGGEN P, ROSENBERG SA, ROBBINS PF. Isolation and characterization of an HLA-DPB1*04:01-restricted MAGE-A3 T-cell receptor for cancer immunotherapy[J]. Journal of Immunotherapy, 2016, 39(5):191-201.
    [52] HOPPE-SEYLER K, BOSSLER F, BRAUN JA, HERRMANN AL, HOPPE-SEYLER F. The HPV E6/E7 oncogenes:key factors for viral carcinogenesis and therapeutic targets[J]. Trends in Microbiology, 2018, 26(2):158-168.
    [53] DORAN SL, STEVANOVIĆ S, ADHIKARY S, GARTNER JJ, JIA L, KWONG MLM, FAQUIN WC, HEWITT SM, SHERRY RM, YANG JC, ROSENBERG SA, HINRICHS CS. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers:a first-in-human, phase I/Ⅱ study[J]. Journal of Clinical Oncology, 2019, 37(30):2759-2768.
    [54] NAGARSHETH NB, NORBERG SM, SINKOE AL, ADHIKARY S, MEYER TJ, LACK JB, WARNER AC, SCHWEITZER C, DORAN SL, KORRAPATI S, STEVANOVIĆ S, TRIMBLE CL, KANAKRY JA, BAGHERI MH, FERRARO E, ASTROW SH, BOT A, FAQUIN WC, STRONCEK D, GKITSAS N, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers[J]. Nature Medicine, 2021, 27(3):419-425.
    [55] STEVANOVIĆ S, DRAPER LM, LANGHAN MM, CAMPBELL TE, KWONG ML, WUNDERLICH JR, DUDLEY ME, YANG JC, SHERRY RM, KAMMULA US, RESTIFO NP, ROSENBERG SA, HINRICHS CS. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells[J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology, 2015, 33(14):1543-1550.
    [56] STEVANOVIĆ S, PASETTO A, HELMAN SR, GARTNER JJ, PRICKETT TD, HOWIE B, ROBINS HS, ROBBINS PF, KLEBANOFF CA, ROSENBERG SA, HINRICHS CS. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer[J]. Science, 2017, 356(6334):200-205.
    [57] MENG FP, ZHAO JF, TAN AT, HU W, WANG SY, JIN JH, WU J, LI YY, SHI L, FU JL, YU SJ, SHEN YJ, LIU LM, LUAN JQ, SHI M, XIE YB, ZHOU CB, WONG RW, WAI LE, KOH S, et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells:results of dose escalation, phase I trial[J]. Hepatology International, 2021, 15(6):1402-1412.
    [58] SHI JF, CAO MM, WANG YT, BAI FZ, LEI L, PENG J, FELETTO E, CANFELL K, QU CF, CHEN WQ. Is it possible to halve the incidence of liver cancer in China by 2050?[J]. International Journal of Cancer, 2021, 148(5):1051-1065.
    [59] WALKER A, SCHWARZ T, BRINKMANN-PAULUKAT J, WISSKIRCHEN K, MENNE C, ALIZEI ES, KEFALAKES H, THEISSEN M, HOFFMANN D, SCHULZE ZUR WIESCH J, MAINI MK, CORNBERG M, KRAFT AR, KEITEL V, BOCK HH, HORN PA, THIMME R, WEDEMEYER H, HEINEMANN FM, LUEDDE T, et al. Immune escape pathways from the HBV core18-27 CD8 T cell response are driven by individual HLA class I alleles[J]. Frontiers in Immunology, 2022, 13:1045498.
    [60] WONG GLH, GANE E, LOK ASF. How to achieve functional cure of HBV:stopping NUCs, adding interferon or new drug development?[J]. Journal of Hepatology, 2022, 76(6):1249-1262.
    [61] MOHD-ISMAIL NK, LIM Z, GUNARATNE J, TAN YJ. Mapping the interactions of HBV cccDNA with host factors[J]. International Journal of Molecular Sciences, 2019, 20(17):4276.
    [62] TAN AT, MENGFP, JIN JH, ZHANG JY, WANG SY, SHI L, SHI M, LI YY, XIE YB, LIU LM, ZHOU CB, CHUA A, HO ZZ, LUAN JQ, ZHAO JF, LI J, WAI LE, KOH S, WANG TT, BERTOLETTI A, et al. Immunological alterations after immunotherapy with short lived HBV-TCR T cells associates with long-term treatment response in HBV-HCC[J]. Hepatology Communications, 2022, 6(4):841-854.
    [63] TAN AT, YANG NH, LEE KRISHNAMOORTHY T, OEI V, CHUA A, ZHAO XY, TAN HUI SI, CHIA A, LE BERT N, LOW D, TAN HK, KUMAR R, IRANI FG, HO ZZ, ZHANG Q, GUCCIONE E, WAI LE, KOH S, HWANG W, CHOW WC, et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy[J]. Gastroenterology, 2019, 156(6):1862-1876.
    [64] HAFEZI M, TAN A, BERTOLETTI A. Personalized armored TCR-redirected T cell therapy for liver/organ transplant with recurrent cancer[J]. Cells, 2021, 10(8):1861.
    [65] TAN AT, BERTOLETTI A. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells[J]. Immunotherapy Advances, 2022, 2(1):ltab026.
    [66] CHAN TA, YARCHOAN M, JAFFEE E, SWANTON C, QUEZADA SA, STENZINGER A, PETERS S. Development of tumor mutation burden as an immunotherapy biomarker:utility for the oncology clinic[J]. Annals of Oncology, 2019, 30(1):44-56.
    [67] YARCHOAN M, JOHNSON BA 3RD, LUTZ ER, LAHERU DA, JAFFEE EM. Targeting neoantigens to augment antitumour immunity[J]. Nature Reviews Cancer, 2017, 17(4):209-222.
    [68] KESKIN DB, ANANDAPPA AJ, SUN J, TIROSH I, MATHEWSON ND, LISQ, OLIVEIRA G, GIOBBIE-HURDER A, FELT K, GJINI E, SHUKLA SA, HU ZT, LI L, LE PM, ALLESØE RL, RICHMAN AR, KOWALCZYK MS, ABDELRAHMAN S, GEDULDIG JE, CHARBONNEAU S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738):234-239.
    [69] SAHIN U, DERHOVANESSIAN E, MILLER M, KLOKE BP, SIMON P, LÖWER M, BUKUR V, TADMOR AD, LUXEMBURGER U, SCHRÖRS B, OMOKOKO T, VORMEHR M, ALBRECHT C, PARUZYNSKI A, KUHN AN, BUCK J, HEESCH S, SCHREEB KH, MÜLLER F, ORTSEIFER I, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662):222-226.
    [70] PIRLOG R, CALIN GA. KRAS mutations as essential promoters of lymphangiogenesis via extracellular vesicles in pancreatic cancer[J]. Journal of Clinical Investigation, 2022, 132(14):e161454.
    [71] ZHU GM, PEI LJ, XIA HW, TANG QL, BI F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer[J]. Molecular Cancer, 2021, 20(1):143.
    [72] RECK M, CARBONE DP, GARASSINO M, BARLESI F. Targeting KRAS in non-small-cell lung cancer:recent progress and new approaches[J]. Annals of Oncology, 2021, 32(9):1101-1110.
    [73] ARBOUR KC, RIZVI H, PLODKOWSKI AJ, HELLMANN MD, KNEZEVIC A, HELLER G, YU HA, LADANYI M, KRIS MG, ARCILA ME, RUDIN CM, LITO P, RIELY GJ. Treatment outcomes and clinical characteristics of patients with KRAS-G12C-mutant non-small cell lung cancer[J]. Clinical Cancer Research:an Official Journal of the American Association for Cancer Research, 2021, 27(8):2209-2215.
    [74] SIMANSHU DK, NISSLEY DV, MCCORMICK F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1):17-33.
    [75] TRAN E, ROBBINS PF, LU YC, PRICKETT TD, GARTNER JJ, JIA L, PASETTO A, ZHENG ZL, RAY S, GROH EM, KRILEY IR, ROSENBERG SA. T-cell transfer therapy targeting mutant KRAS in cancer[J]. New England Journal of Medicine, 2016, 375(23):2255-2262.
    [76] LEIDNER R, SANJUAN SILVA N, HUANG HY, SPROTT D, ZHENG CH, SHIH YP, LEUNG A, PAYNE R, SUTCLIFFE K, CRAMER J, ROSENBERG SA, FOX BA, URBA WJ, TRAN E. Neoantigen T-cell receptor gene therapy in pancreatic cancer[J]. New England Journal of Medicine, 2022, 387(22):2112-2119.
    [77] FOY SP, JACOBY K, BOTA DA, HUNTER T, PAN Z, STAWISKI E, MA Y, LU W, PENG SM, WANG CL, YUEN B, DALMAS O, HEERINGA K, SENNINO B, CONROY A, BETHUNE MT, MENDE I, WHITE W, KUKREJA M, GUNTURU S, et al. Non-viral precision T cell receptor replacement for personalized cell therapy[J]. Nature, 2023, 615(7953):687-696.
    [78] STADTMAUER EA, FRAIETTA JA, DAVIS MM, COHEN AD, WEBER KL, LANCASTER E, MANGAN PA, KULIKOVSKAYA I, GUPTA M, CHEN F, TIAN LF, GONZALEZ VE, XU J, JUNG IY, MELENHORST JJ, PLESA G, SHEA J, MATLAWSKI T, CERVINI A, GAYMON AL, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481):eaba7365.
    [79] ISHIHARA M, KITANO S, KAGEYAMA S, MIYAHARA Y, YAMAMOTO N, KATO H, MISHIMA H, HATTORI H, FUNAKOSHI T, KOJIMA T, SASADA T, SATO E, OKAMOTO S, TOMURA D, NUKAYA I, CHONO H, MINENO J, KAIRI MF, DIEM HOANG NGUYEN P, SIMONI Y, et al. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome[J]. Journal for Immunotherapy of Cancer, 2022, 10(6):e003811.
    [80] OKAMOTO S, MINENO J, IKEDA H, FUJIWARA H, YASUKAWA M, SHIKU H, KATO I. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR[J]. Cancer Research, 2009, 69(23):9003-9011.
    [81] LIDDY N, BOSSI G, ADAMS KJ, LISSINA A, MAHON TM, HASSAN NJ, GAVARRET J, BIANCHI FC, PUMPHREY NJ, LADELL K, GOSTICK E, SEWELL AK, LISSIN NM, HARWOOD NE, MOLLOY PE, LI Y, CAMERON BJ, SAMI M, BASTON EE, TODOROV PT, et al. Monoclonal TCR-redirected tumor cell killing[J]. Nature Medicine, 2012, 18(6):980-987.
    [82] DOLGIN E. First soluble TCR therapy opens‘new universe’ of cancer targets[J]. Nature Biotechnology, 2022, 40(4):441-444.
    [83] NATHAN P, HASSEL JC, RUTKOWSKI P, BAURAIN JF, BUTLER MO, SCHLAAK M, SULLIVAN RJ, OCHSENREITHER S, DUMMER R, KIRKWOOD JM, JOSHUA AM, SACCO JJ, SHOUSHTARI AN, ORLOFF M, PIULATS JM, MILHEM M, SALAMA AKS, CURTI B, DEMIDOV L, GASTAUD L, et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma[J]. New England Journal of Medicine, 2021, 385(13):1196-1206.
    [84] DAVAR D, SWEIS RF, BLUMENSCHEIN G JR, GUTIERREZ R, MELERO I, CHEN HA, THISTLETHWAITE F, MOORE KN, SEGAL NH, GARRALDA E, WILKY B, ARKENAU HT, EVANS TRJ, JOHNSON ML, DAR M, HOLLAND C, MARSHALL S, STANHOPE S, KIRK P, LOPEZ JS. 91P phase I dose escalation of IMC-C103C, a CD3×MAGE-A4 T-cell receptor (TCR) bispecific protein[J]. Annals of Oncology, 2021, 32:S1411-S1413.
    [85] HAMID O, SATO T, DAVAR D, CALLAHAN MK, THISTLETHWAITE F, ALJUMAILY R, JOHNSON ML, ARKENAU HT, ILEANA DUMBRAVA EE, IZAR B, CHEN HA, MARSHALL S, YUAN Y, DEO M, STANHOPE S, COLLINS L, MUNDY R, ABDULLAH SE, LOPEZ JS. 728O results from phase I dose escalation of IMC-F106C, the first PRAME×CD3 ImmTAC bispecific protein in solid tumors[J]. Annals of Oncology, 2022, 33:S875.
    [86] POOLE A, KARUPPIAH V, HARTT A, HAIDAR JN, MOUREAU S, DOBRZYCKI T, HAYES C, ROWLEY C, DIAS J, HARPER S, BARNBROOK K, HOCK M, COLES C, YANG W, ALEKSIC M, LIN AB, ROBINSON R, DUKES JD, LIDDY N, van der KAMP M, et al. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen[J]. Nature Communications, 2022, 13(1):5333.
    [87] PRIOR IA, LEWIS PD, MATTOS C. A comprehensive survey of ras mutations in cancer[J]. Cancer Research, 2012, 72(10):2457-2467.
    [88] ROBINSON RA, MCMURRAN C, MCCULLY ML, COLE DK. Engineering soluble T-cell receptors for therapy[J]. The FEBS Journal, 2021, 288(21):6159-6173.
    [89] LI Y, MOYSEY R, MOLLOY PE, VUIDEPOT AL, MAHON T, BASTON E, DUNN S, LIDDY N, JACOB J, JAKOBSEN BK, BOULTER JM. Directed evolution of human T-cell receptors with picomolar affinities by phage display[J]. Nature Biotechnology, 2005, 23(3):349-354.
    [90] MADURA F, RIZKALLAH PJ, MILES KM, HOLLAND CJ, BULEK AM, FULLER A, SCHAUENBURG AJA, MILES JJ, LIDDY N, SAMI M, LI Y, HOSSAIN M, BAKER BM, JAKOBSEN BK, SEWELL AK, COLE DK. T-cell receptor specificity maintained by altered thermodynamics[J]. The Journal of Biological Chemistry, 2013, 288(26):18766-18775.
    [91] SMITH SN, HARRIS DT, KRANZ DM. T cell receptor engineering and analysis using the yeast display platform[J]. Methods in Molecular Biology (Clifton, N J), 2015, 1319:95-141.
    [92] KARAHAN ZS, ARAS M, SÜTLÜ T. TCR-NK cells:a novel source for adoptive immunotherapy of cancer[J]. Turkish Journal of Hematology, 2023, 40(1):1-10.
    [93] MEZA GUZMAN LG, KEATING N, NICHOLSON SE. Natural killer cells:tumor surveillance and signaling[J]. Cancers (Basel), 2020, 12(4):952.
    [94] MYERS JA, MILLER JS. Exploring the NK cell platform for cancer immunotherapy[J]. Nature Reviews Clinical Oncology, 2021, 18(2):85-100.
    [95] KANG S, GAO XF, ZHANG L, YANG EN, LI YH, YU L. The advances and challenges of NK cell-based cancer immunotherapy[J]. Current Oncology, 2021, 28(2):1077-1093.
    [96] PARLAR A, SAYITOGLU EC, OZKAZANC D, GEORGOUDAKI AM, PAMUKCU C, ARAS M, JOSEY BJ, CHROBOK M, BRANECKI S, ZAHEDIMARAM P, IKROMZODA L, ALICI E, ERMAN B, DURU AD, SUTLU T. Engineering antigen-specific NK cell lines against the melanoma-associated antigen tyrosinase via TCR gene transfer[J]. European Journal of Immunology, 2019, 49(8):1278-1290.
    [97] LI SC, ZHANG CT, SHEN LY, TENG X, XIAO YF, YU BT, LU ZM. TCR extracellular domain genetically linked to CD28, 2B4/41BB and DAP10/CD3ζ-engineered NK cells mediates antitumor effects[J]. Cancer Immunology, Immunotherapy, 2023, 72(3):769-774.
    [98] KRAUSA P, BROWNING MJ. HLA-A2 polymorphism and immune functions[J]. International Journal of Immunogenetics, 1996, 23(4):261-274.
    [99] YANG G, DENG YJ, HU SN, WU DY, LI SB, ZHU J, ZHU BF, LIU Y. HLA-A,-B, and-DRB1 polymorphism defined by sequence-based typing of the Han population in northern China[J]. Tissue Antigens, 2006, 67(2):146-152.
    [100] 张洪波, 赖江华, 李生斌. 西北地区汉族人群HLA-A、-B、-DRB1基因座单倍型分析[J]. 中华医学遗传学杂志, 2005, 22(4):464-466. ZHANG HB, LAI JH, LI SB. Analysis on HLA haplotypes of loci HLA-A,-B, and-DRB1 in northwest Chinese Han population[J]. Chinese Journal of Medical Genetics, 2005, 22(4):464-466(in Chinese).
    [101] DHALIWAL JS, SHAHNAZ M, TOO CL, AZRENA A, MAISELAMAH L, LEE YY, IRDA YA, SALAWATI M. HLA-A,-B and-DR allele and haplotype frequencies in malays[J]. Asian Pacific Journal of Allergy and Immunology, 2007, 25(1):47-51.
    [102] ANDO T, MIMURA K, JOHANSSON CC, HANSON MG, MOUGIAKAKOS D, LARSSON C, MARTINS DA PALMA T, SAKURAI D, NORELL H, LI ML, NISHIMURA MI, KIESSLING R. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress[J]. Journal of Immunology, 2008, 181(12):8382-8390.
    [103] IDORN M, SKADBORG SK, KELLERMANN L, HALLDÓRSDÓTTIR HR, HOLMEN OLOFSSON G, MET Ö, THOR STRATEN P. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model[J]. Oncoimmunology, 2018, 7(8):e1450715.
    [104] PENG WY, YE Y, RABINOVICH BA, LIU CW, LOU YY, ZHANG MY, WHITTINGTON M, YANG Y, OVERWIJK WW, LIZÉE G, HWU P. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses[J]. Clinical Cancer Research, 2010, 16(22):5458-5468.
    [105] KLOSS CC, LEE J, ZHANG A, CHEN F, MELENHORST JJ, LACEY SF, MAUS MV, FRAIETTA JA, ZHAO YB, JUNE CH. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication[J]. Molecular Therapy, 2018, 26(7):1855-1866.
    [106] RATHMELL JC, FARKASH EA, GAO W, THOMPSON CB. IL-7 enhances the survival and maintains the size of naive T cells[J]. Journal of Immunology, 2001, 167(12):6869-6876.
    [107] ROSSETTI R, BRAND H, LIMA SCG, FURTADO IP, SILVEIRA RM, FANTACINI DMC, COVAS DT, de SOUZA LEB. Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer[J]. Immunotherapy Advances, 2022, 2(1):ltac005.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈缘,高福,谭曙光. 以T细胞受体为基础的免疫疗法研究进展[J]. 生物工程学报, 2023, 39(10): 4004-4028

复制
分享
文章指标
  • 点击次数:826
  • 下载次数: 1952
  • HTML阅读次数: 1744
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 录用日期:2023-05-26
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6020910位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司