人工神经导管原材料选择与功能设计的研究进展
作者:
基金项目:

湖北省自然科学基金(2021CFB081);大学生创新创业训练计划项目(S202210487037);协和医院自由创新基金(2021xhyn051)


Advances in the raw material selection and functional design of artificial nerve guidance conduits
Author:
  • LIU Jingwei

    LIU Jingwei

    Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jian

    WANG Jian

    Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China;Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Lin

    WANG Lin

    Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China;Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    人工神经导管(nerve guidance conduits,NGCs)作为一种合成的神经移植物,为神经再生提供结构与营养支持。理想的神经导管对生物相容性、机械强度、拓扑结构和导电性等均有较高要求,因此需对神经导管的设计不断改进并建立更完善的周围神经再生策略,以期满足临床需求。虽然NGCs在周围神经损伤的治疗中已经取得一定进展,但其对长距离神经离断伤的结构与功能修复仍不理想。本文分别从原材料选择、结构设计、治疗因子搭载及自供电元件集成4个方面对神经导管的设计进行综述,归纳总结NGCs在周围神经损伤治疗中的研究进展,以期推动NGCs的迭代更新与临床转化。

    Abstract:

    Artificial nerve guidance conduits (NGCs) are synthetic nerve grafts that are capable of providing the structural and nutritional support for nerve regeneration. The ideal NGCs have plenty of requirements on biocompatibility, mechanical strength, topological structure, and conductivity. Therefore, it is necessary to continuously improve the design of NGCs and establish a better therapeutic strategy for peripheral nerve injury in order to meet clinical needs. Although current NGCs have made certain process in the treatment of peripheral nerve injury, their nerve regeneration and functional outcomes on repairing long-distance nerve injury remain unsatisfactory. Herein, we review the nerve conduit design from four aspects, namely raw material selection, structural design, therapeutic factor loading and self-powered component integration. Moreover, we summarize the research progress of NGCs in the treatment of peripheral nerve injury, in order to facilitate the iterative updating and clinical transformation of NGCs.

    参考文献
    [1] NOBLE J, MUNRO CA, PRASAD VSSV, MIDHA R. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries[J]. The Journal of Trauma:Injury, Infection, and Critical Care, 1998, 45(1):116-122.
    [2] WANG ML, RIVLIN M, GRAHAM JG, BEREDJIKLIAN PK. Peripheral nerve injury, scarring, and recovery[J]. Connective Tissue Research, 2019, 60(1):3-9.
    [3] HALLGREN A, BJÖRKMAN A, CHEMNITZ A, DAHLIN LB. Subjective outcome related to donor site morbidity after sural nerve graft harvesting:a survey in 41 patients[J]. BMC Surgery, 2013, 13(1):1-7.
    [4] BOECKER A, DAESCHLER SC, KNESER U, HARHAUS L. Relevance and recent developments of chitosan in peripheral nerve surgery[J]. Frontiers in Cellular Neuroscience, 2019, 13:104.
    [5] VIJAYAVENKATARAMAN S. Nerve guide conduits for peripheral nerve injury repair:a review on design, materials and fabrication methods[J]. Acta Biomaterialia, 2020, 106:54-69.
    [6] QUIGLEY AF, BULLUSS KJ, KYRATZIS IB, GILMORE K, MYSORE T, SCHIRMER KU, KENNEDY EL, O'SHEA M, TRUONG YB, EDWARDS SL, PEETERS G, HERWIG P, RAZAL JM, CAMPBELL TE, LOWES KN, HIGGINS MJ, MOULTON SE, MURPHY MA, COOK MJ, CLARK GM, et al. Engineering a multimodal nerve conduit for repair of injured peripheral nerve[J]. Journal of Neural Engineering, 2013, 10(1):016008.
    [7] STANEC S, STANEC Z. Reconstruction of upper-extremity peripheral-nerve injuries with ePTFE conduits[J]. Journal of Reconstructive Microsurgery, 1998, 14(4):227-232.
    [8] LUNDBORG G, GELBERMAN RH, LONGO FM, POWELL HC, VARON S. In vivo regeneration of cut nerves encased in silicone tubes[J]. Journal of Neuropathology and Experimental Neurology, 1982, 41(4):412-422.
    [9] KONOFAOS P, VER HALEN J. Nerve repair by means of tubulization:past, present, future[J]. Journal of Reconstructive Microsurgery, 2013, 29(3):149-164.
    [10] GAUDIN R, KNIPFER C, HENNINGSEN A, SMEETS R, HEILAND M, HADLOCK T. Approaches to peripheral nerve repair:generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery[J]. BioMed Research International, 2016, 2016:1-18.
    [11] WEBER RA, BREIDENBACH WC, BROWN RE, JABALEY ME, MASS DP. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans[J]. Plastic and Reconstructive Surgery, 2000, 106(5):1036-1045.
    [12] CRAWLEY WA, DELLON LA. Inferior alveolar nerve reconstruction with a polyglycolic acid bioabsorbable nerve conduit[J]. Plastic and Reconstructive Surgery, 1992, 90(2):300-302.
    [13] WANGENSTEEN K, KALLIAINEN L. Collagen tube conduits in peripheral nerve repair:a retrospective analysis[J]. Hand, 2010, 5:273-277.
    [14] JANSEN K, MEEKMF, van der WERFF JFA, van WACHEM PB, van LUYN MJA. Long-term regeneration of the rat sciatic nerve through a biodegradable poly(dl-lactide-epsilon-caprolactone) nerve guide:tissue reactions with focus on collagen Ⅲ/Ⅳ reformation[J]. Journal of Biomedical Materials Research, 2004, 69A(2):334-341.
    [15] DUDA S, DREYER L, BEHRENS P, WIENECKE S, CHAKRADEO T, GLASMACHER B, HAASTERT-TALINI K. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides[J]. BioMed Research International, 2014, 2014:1-16.
    [16] DEUMENS R, BOZKURT A, MEEK MF, MARCUS MAE, JOOSTEN EAJ, WEIS J, BROOK GA. Repairing injured peripheral nerves:bridging the gap[J]. Progress in Neurobiology, 2010, 92(3):245-276.
    [17] POONGODI R, CHEN YL, YANG TH, HUANG YH, YANG KD, LIN HC, CHENG JK. Bio-scaffolds as cell or exosome carriers for nerve injury repair[J]. International Journal of Molecular Sciences, 2021, 22(24):13347.
    [18] LI RX, LIU HW, HUANG HT, BI WT, YAN RZ, TAN XY, WEN WS, WANG C, SONG WL, ZHANG YH, ZHANG F, HU M. Chitosan conduit combined with hyaluronic acid prevent sciatic nerve scar in a rat model of peripheral nerve crush injury[J]. Molecular Medicine Reports, 2018, 17(3):4360-4368.
    [19] ENTEKHABI E, HAGHBIN NAZARPAK M, SHAFIEIAN M, MOHAMMADI H, FIROUZI M, HASSANNEJAD Z. Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration[J]. Journal of Biomedical Materials Research Part A, 2021, 109(3):300-312.
    [20] LU PJ, WANG G, QIAN TM, CAI XD, ZHANG P, LI MY, SHEN YY, XUE CB, WANG HK. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration[J]. Materials Today Bio, 2021, 12:100158.
    [21] RAO F, WANG YH, ZHANG DY, LU CF, CAO Z, SUI JJ, WU MJ, ZHANG YW, PI W, WANG B, KOU YH, WANG XM, ZHANG PX, JIANG BG. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats[J]. Theranostics, 2020, 10(4):1590-1603.
    [22] SALEHI M, BAGHER Z, KAMRAVA SK, EHTERAMI A, ALIZADEH R, FARHADI M, FALAH M, KOMEILI A. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering[J]. Journal of Cellular Physiology, 2019, 234(9):15357-15368.
    [23] RAHMATI M, EHTERAMI A, SABERANI R, ABBASZADEH-GOUDARZI G, REZAEI KOLARIJANI N, KHASTAR H, GARMABI B, SALEHI M. Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine[J]. Drug Delivery and Translational Research, 2021, 11(5):1983-1993.
    [24] ZHANG LZ, XU L, LI GC, YANG YM. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation[J]. Colloids and Surfaces B:Biointerfaces, 2019, 173:689-697.
    [25] ZHANG SJ, WANG J, ZHENG ZZ, YAN J, ZHANG L, LI Y, ZHANG JH, LI G, WANG XQ, KAPLAN D. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J]. Acta Biomaterialia, 2021, 134:116-130.
    [26] ZHANG L, YANG W, TAO KX, SONG Y, XIE HJ, WANG J, LI XL, SHUAI XM, GAO JB, CHANG PP, WANG GB, WANG Z, WANG L. Sustained local release of NGF from a chitosan-sericin composite scaffold for treating chronic nerve compression[J]. ACS Applied Materials & Interfaces, 2017, 9(4):3432-3444.
    [27] LI XL, YANG W, XIE HJ, WANG J, ZHANG L, WANG Z, WANG L. CNT/sericin conductive nerve guidance conduit promotes functional recovery of transected peripheral nerve injury in a rat model[J]. ACS Applied Materials & Interfaces, 2020, 12(33):36860-36872.
    [28] JAHROMI HK, FARZIN A, HASANZADEH E, BAROUGH SE, MAHMOODI N, NAJAFABADI MRH, FARAHANI MS, MANSOORI K, SHIRIAN S, AI J. Enhanced sciatic nerve regeneration by poly-l-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat[J]. Materials Science and Engineering:C, 2020, 109:110564.
    [29] ZHENG CS, YANG ZH, CHEN SH, ZHANG F, RAO ZL, ZHAO CL, QUAN DP, BAI Y, SHEN J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair[J]. Theranostics, 2021, 11(6):2917-2931.
    [30] VIJAYAVENKATARAMAN S, KANNAN S, CAO T, FUH JYH, SRIRAM G, LU WF. 3D-printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7:266.
    [31] QIAN Y, ZHAO XT, HAN QX, CHEN W, LI H, YUAN WE. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration[J]. Nature Communications, 2018, 9(1):323.
    [32] LACKINGTON WA, KOČÍ Z, ALEKSEEVA T, HIBBITTS AJ, KNEAFSEY SL, CHEN G, O'BRIEN FJ. Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects[J]. Journal of Controlled Release, 2019, 304:51-64.
    [33] HAIDAR MK, TIMUR SS, KAZANCI A, TURKOGLU OF, GÜRSOY RN, NEMUTLU E, SARGON MF, BODUR E, GÖK M, ULUBAYRAM K, ÖNER L, EROĞLU H. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153:1-13.
    [34] HEMSHEKHAR M, THUSHARA RM, CHANDRANAYAKA S, SHERMAN LS, KEMPARAJU K, GIRISH KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine[J]. International Journal of Biological Macromolecules, 2016, 86:917-928.
    [35] BENOWITZ LI, POPOVICH PG. Inflammation and axon regeneration[J]. Current Opinion in Neurology, 2011, 24(6):577-583.
    [36] ZHAO YH, WANG YJ, GONG JH, YANG L, NIU CM, NI XJ, WANG YL, PENG S, GU XS, SUN C, YANG YM. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments[J]. Biomaterials, 2017, 134:64-77.
    [37] SUN JC, TAN HP. Alginate-based biomaterials for regenerative medicine applications[J]. Materials, 2013, 6(4):1285-1309.
    [38] YI BC, ZHANG HL, YU ZP, YUAN HH, WANG XL, ZHANG YZ. Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration[J]. Journal of Materials Chemistry B, 2018, 6(23):3934-3945.
    [39] CHEN ZY, ZHANG Q, LI HM, WEI Q, ZHAO X, CHEN FL. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair[J]. Bioactive Materials, 2021, 6(3):589-601.
    [40] NGUYEN TP, NGUYEN QV, NGUYEN VH, LE TH, HUYNH VQN, VO DV N, TRINH QT, KIM SY, van LE Q. Silk fibroin-based biomaterials for biomedical applications:a review[J]. Polymers, 2019, 11(12):1933.
    [41] MAGAZ A, FARONI A, GOUGH JE, REID AJ, LI X, BLAKER JJ. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair[J]. Advanced Healthcare Materials, 2018, 7(23):1800308.
    [42] XIE HJ, YANG W, CHEN JH, ZHANG JX, LU XC, ZHAO XB, HUANG K, LI HL, CHANG PP, WANG Z, WANG L. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve[J]. Advanced Healthcare Materials, 2015, 4(15):2195-2205.
    [43] WANG Z, WANG J, JIN Y, LUO Z, YANG W, XIE HJ, HUANG K, WANG L. A neuroprotective sericin hydrogel as an effective neuronal cell carrier for the repair of ischemic stroke[J]. ACS Applied Materials & Interfaces, 2015, 7(44):24629-24640.
    [44] FORNASARI BE, CARTA G, GAMBAROTTA G, RAIMONDO S. Natural-based biomaterials for peripheral nerve injury repair[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:554257.
    [45] CAMPBELL JB. Peripheral nerve repair[J]. Neurosurgery, 1970, 17(supplement 1):77-98.
    [46] ABBASIPOUR-DALIVAND S, MOHAMMADI R, MOHAMMADI V. Effects of local administration of platelet rich plasma on functional recovery after bridging sciatic nerve defect using silicone rubber chamber; an experimental study[J]. Bulletin of Emergency and Trauma, 2015, 3(1):1-7.
    [47] SUNDERLAND S. A classification of peripheral nerve injuries producing loss of function[J]. Brain, 1951, 74(4):491-516.
    [48] MIDDLETON JC, TIPTON AJ. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21(23):2335-2346.
    [49] CHANG SH, LEE HJ, PARK S, KIM Y, JEONG B. Fast degradable polycaprolactone for drug delivery[J]. Biomacromolecules, 2018, 19(6):2302-2307.
    [50] LI C, LIU IKK, TSAO CY, CHAN V. Neuronal differentiation of human placenta-derived multi-potent stem cells enhanced by cell body oscillation on gelatin hydrogel[J]. Journal of Bioactive and Compatible Polymers, 2014, 29(6):529-544.
    [51] VROMAN I, TIGHZERT L. Biodegradable polymers[J]. Materials, 2009, 2:307-344.
    [52] VELDE K, KIEKENS P. Biopolymers:overview of several properties and consequences on their applications[J]. Polymer Testing, 2002, 21(4):433-442.
    [53] MAKADIA HK, SIEGEL SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers, 2011, 3(3):1377-1397.
    [54] DUFFY P, MCMAHON S, WANG X, KEAVENEY S, O'CEARBHAILL ED, QUINTANA I, RODRÍGUEZ FJ, WANG WX. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date[J]. Biomaterials Science, 2019, 7(12):4912-4943.
    [55] LASPRILLA AJR, MARTINEZ GAR, LUNELLI BH, JARDINI AL, MACIEL FILHO R. Poly-lactic acid synthesis for application in biomedical devices-a review[J]. Biotechnology Advances, 2012, 30(1):321-328.
    [56] WOODRUFF MA, HUTMACHER DW. The return of a forgotten polymer-polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10):1217-1256.
    [57] WANG J, XIONG H, ZHU TH, LIU Y, PAN HB, FAN CY, ZHAO XL, LU WW. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair[J]. ACS Nano, 2020, 14(10):12579-12595.
    [58] YAO L, RUITER GC, WANG H, KNIGHT AM, SPINNER RJ, YASZEMSKI MJ, WINDEBANK AJ, PANDIT A. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit[J]. Biomaterials, 2010, 31(22):5789-5797.
    [59] MANOUKIAN OS, ARUL MR, RUDRAIAH S, KALAJZIC I, KUMBAR SG. Aligned microchannel polymer-nanotube composites for peripheral nerve regeneration:small molecule drug delivery[J]. Journal of Controlled Release, 2019, 296:54-67.
    [60] HUANG LL, GAO JB, WANG HR, XIA B, YANG YJ, XU F, ZHENG XF, HUANG JH, LUO ZJ. Fabrication of 3D scaffolds displaying biochemical gradients along longitudinally oriented microchannels for neural tissue engineering[J]. ACS Applied Materials & Interfaces, 2020, 12(43):48380-48394.
    [61] DAVIS B, WOJTALEWICZ S, LABROO P, SHEA J, SANT H, GALE B, AGARWAL J. Controlled release of FK506 from micropatterned PLGA films:potential for application in peripheral nerve repair[J]. Neural Regeneration Research, 2018, 13(7):1247-1252.
    [62] YU X, ZHANG DT, LIU C, LIU ZD, LI YJ, ZHAO QZ, GAO CY, WANG Y. Micropatterned poly(d, l-lactide-co-caprolactone) conduits with KHI-peptide and NGF promote peripheral nerve repair after severe traction injury[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:744230.
    [63] CAO JN, XIAO ZF, JIN W, CHEN B, MENG DQ, DING WY, HAN SF, HOU XS, ZHU TS, YUAN BY, WANG J, LIANG WB, DAI JW. Induction of rat facial nerve regeneration by functional collagen scaffolds[J]. Biomaterials, 2013, 34(4):1302-1310.
    [64] HUANG W, BEGUM R, BARBER T, IBBA V, TEE NCH, HUSSAIN M, ARASTOO M, YANG Q, ROBSON LG, LESAGE S, GHEYSENS T, SKAER NJV, KNIGHT DP, PRIESTLEY JV. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J]. Biomaterials, 2012, 33(1):59-71.
    [65] YANG CY, HUANG WY, CHEN LH, LIANG NW, WANG HC, LU JJ, WANG XM, WANG TW. Neural tissue engineering:the influence of scaffold surface topography and extracellular matrix microenvironment[J]. Journal of Materials Chemistry B, 2021, 9(3):567-584.
    [66] MA Y, GAO HC, WANG H, CAO XD. Engineering topography:effects on nerve cell behaviors and applications in peripheral nerve repair[J]. Journal of Materials Chemistry B, 2021, 9(32):6310-6325.
    [67] YU TH, WEN LL, HE J, XU YX, LI T, WANG WZ, MA YZ, AHMAD MA, TIAN XH, FAN J, WANG XH, HAGIWARA H, AO Q. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels[J]. Acta Biomaterialia, 2020, 115:235-249.
    [68] OLIVEIRA AL, SUN L, KIM HJ, HU X, RICE W, KLUGE J, REIS RL, KAPLAN DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering[J]. Acta Biomaterialia, 2012, 8(4):1530-1542.
    [69] LIZARRAGA-VALDERRAMA LR, TAYLOR CS, CLAEYSSENS F, HAYCOCK JW, KNOWLES JC, ROY I. Unidirectional neuronal cell growth and differentiation on aligned polyhydroxyalkanoate blend microfibres with varying diameters[J]. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13(9):1581-1594.
    [70] WEISS P, TAYLOR AC. Guides for nerve regeneration across gaps[J]. Journal of Neurosurgery, 1946, 3(5):375-389.
    [71] LI A, HOKUGO A, YALOM A, BERNS EJ, STEPHANOPOULOS N, MCCLENDON MT, SEGOVIA LA, SPIGELMAN I, STUPP SI, JARRAHY R. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers[J]. Biomaterials, 2014, 35(31):8780-8790.
    [72] SARKER MD, NAGHIEH S, MCINNES AD, SCHREYER DJ, CHEN XB. Regeneration of peripheral nerves by nerve guidance conduits:influence of design, biopolymers, cells, growth factors, and physical stimuli[J]. Progress in Neurobiology, 2018, 171:125-150.
    [73] WANG Y, LI D, WANG GY, CHEN LL, CHEN J, LIU ZY, ZHANG ZF, SHEN H, JIN YQ, SHEN ZL. The effect of co-transplantation of nerve fibroblasts and Schwann cells on peripheral nerve repair[J]. International Journal of Biological Sciences, 2017, 13(12):1507-1519.
    [74] WU P, TONG Z, LUO LH, ZHAO YN, CHEN FX, LI YP, HUSELSTEIN C, YE QF, YE QS, CHEN Y. Comprehensive strategy of conduit guidance combined with VEGF producing Schwann cells accelerates peripheral nerve repair[J]. Bioactive Materials, 2021, 6(10):3515-3527.
    [75] MATHOT F, SHIN AY, van WIJNEN AJ. Targeted stimulation of MSCs in peripheral nerve repair[J]. Gene, 2019, 710:17-23.
    [76] LI Y, KAMEI Y, KAMBE M, EBISAWA K, OISHI M, TAKANARI K. Peripheral nerve regeneration using different germ layer-derived adult stem cells in the past decade[J]. Behavioural Neurology, 2021, 2021:1-15.
    [77] MA YB, GE SH, ZHANG JH, ZHOU D, LI L, WANG XF, SU JH. Mesenchymal stem cell-derived extracellular vesicles promote nerve regeneration after sciatic nerve crush injury in rats[J]. International journal of clinical and experimental pathology, 2017, 10(9):10032-10039.
    [78] MAHAY D, TERENGHI G, SHAWCROSS SG. Schwann cell mediated trophic effects by differentiated mesenchymal stem cells[J]. Experimental Cell Research, 2008, 314(14):2692-2701.
    [79] WANG JP, LIAO YT, WU SH, CHIANG ER, HSU SH, TSENG TC, HUNG SC. Mesenchymal stem cells from a hypoxic culture improve nerve regeneration[J]. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14(12):1804-1814.
    [80] ZHOU LN, WANG JC, ZILUNDU PLM, WANG YQ, GUO WP, ZHANG SX, LUO H, ZHOU JH, DENG RD, CHEN DF. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo[J]. Stem Cell Research & Therapy. 2020, 11(1):153.
    [81] PFISTER LA, PAPALOÏZOS M, MERKLE HP, GANDER B. Nerve conduits and growth factor delivery in peripheral nerve repair[J]. Journal of the Peripheral Nervous System, 2007, 12(2):65-82.
    [82] HONG MH, HONG HJ, PANG H, LEE HJ, YI S, KOH WG. Controlled release of growth factors from multilayered fibrous scaffold for functional recoveries in crushed sciatic nerve[J]. ACS Biomaterials Science & Engineering, 2018, 4(2):576-586.
    [83] ZHANG L, YANG W, XIE HJ, WANG H, WANG J, SU QF, LI XL, SONG Y, WANG GB, WANG L, WANG Z. Sericin nerve guidance conduit delivering therapeutically repurposed clobetasol for functional and structural regeneration of transected peripheral nerves[J]. ACS Biomaterials Science & Engineering, 2019, 5(3):1426-1439.
    [84] QING LM, CHEN HW, TANG JY, JIA XF. Exosomes and their microRNA cargo:new players in peripheral nerve regeneration[J]. Neurorehabilitation and Neural Repair, 2018, 32(9):765-776.
    [85] HSU JM, SHIUE SJ, YANG KD, SHIUE HS, HUNG YW, PANNURU P, POONGODI R, LIN HY, CHENG JK. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats[J]. Journal of Pain Research, 2020, 13:3257-3268.
    [86] RAO F, ZHANG DY, FANG T, LU CF, WANG B, DING X, WEI S, ZHANG YR, PI W, XU HL, WANG YH, JIANG BG, ZHANG PX. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve regeneration[J]. Stem Cells International, 2019, 2019:1-12.
    [87] ZUO KJ, GORDON T, CHAN KM, BORSCHEL GH. Electrical stimulation to enhance peripheral nerve regeneration:update in molecular investigations and clinical translation[J]. Experimental Neurology, 2020, 332:113397.
    [88] WANG J, CHENG Y, CHEN L, ZHU TH, YE KQ, JIA C, WANG HJ, ZHU MF, FAN CY, MO XM. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration[J]. Acta Biomaterialia, 2019, 84:98-113.
    [89] MACEWAN MR, GAMBLE P, STEPHEN M, RAY WZ. Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators[J]. Journal of Neurosurgery, 2019, 130(2):486-495.
    [90] KOO J, MACEWAN MR, KANG SK, WON SM, STEPHEN M, GAMBLE P, XIE ZQ, YAN Y, CHEN YY, SHIN J, BIRENBAUM N, CHUNG S, KIM SB, KHALIFEH J, HARBURG DV, BEAN K, PASKETT M, KIM J, ZOHNY ZS, LEE SM, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy[J]. Nature Medicine, 2018, 24(12):1830-1836.
    [91] WANG L, LU CF, YANG SH, SUN PC, WANG Y, GUAN YJ, LIU S, CHENG DL, MENG HY, WANG Q, HE JG, HOU HQ, LI H, LU W, ZHAO YX, WANG J, ZHU YQ, LI YX, LUO D, LI T, et al. A fully biodegradable and self-electrified device for neuroregenerative medicine[J]. Science Advances, 2020, 6(50):eabc6686.
    [92] SUN Y, QUAN Q, MENG HY, ZHENG YD, PENG J, HU YX, FENG ZX, SANG X, QIAO K, HE W, CHI XQ, ZHAO L. Enhanced neurite outgrowth on a multiblock conductive nerve scaffold with self-powered electrical stimulation[J]. Advanced Healthcare Materials, 2019, 8(10):1900127.
    [93] PIECH DK, JOHNSON BC, SHEN K, GHANBARI MM, LI KY, NEELY RM, KAY JE, CARMENA JM, MAHARBIZ MM, MULLER R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication[J]. Nature Biomedical Engineering, 2020, 4(2):207-222.
    [94] JIN F, LI T, YUAN T, DU LJ, LAI CT, WU Q, ZHAO Y, SUN FY, GU L, WANG T, FENG ZQ. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration[J]. Advanced Materials, 2021, 33(48):2104175.
    [95] FERSON ND, UHL AM, ANDREW JS. Piezoelectric and magnetoelectric scaffolds for tissue regeneration and biomedicine:a review[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2021, 68(2):229-241.
    [96] KAPAT K, SHUBHRA QTH, ZHOU M, LEEUWENBURGH S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration[J]. Advanced Functional Materials, 2020, 30(44):1909045.
    [97] CHU XL, SONG XZ, LI Q, LI YR, HE F, GU XS, MING D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation[J]. Neural Regeneration Research, 2022, 17(10):2185-2193.
    [98] KAWAMURA K, KANO Y. Electrical stimulation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway[J]. Neuroscience Letters, 2019, 698:81-84.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘经伟,王健,王琳. 人工神经导管原材料选择与功能设计的研究进展[J]. 生物工程学报, 2023, 39(10): 4057-4074

复制
分享
文章指标
  • 点击次数:342
  • 下载次数: 1137
  • HTML阅读次数: 867
  • 引用次数: 0
历史
  • 收稿日期:2022-12-29
  • 录用日期:2023-04-11
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6020937位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司