一种新型的CRISPR/Cas9-hLacI双链DNA供体适配基因编辑系统
作者:
基金项目:

地方基金项目(NK2022010207);内蒙古自治区“揭榜挂帅”项目(2022JBGS0025)


A novel CRISPR/Cas9-hLacI donor adapting system for dsDNA-templated gene editing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在CRISPR/Cas9系统介导的基因编辑中,借助于双链DNA (double-stranded DNA,dsDNA)供体模板的重组效应能够实现对目标基因组靶位点的精确编辑和基因敲入,然而高等真核生物细胞中同源重组的低效性限制了该基因编辑策略的发展和应用。为提高CRISPR/Cas9系统介导dsDNA供体模板的同源重组效率,本研究利用大肠杆菌(Escherichia coli)乳糖操纵子阻遏蛋白LacI与操纵序列LacO特异性结合的特点,通过重组DNA技术将密码子人源化优化的阻遏蛋白基因LacI分别与脓链球菌(Streptococcus pyogenes)源的SpCas9和路邓葡萄球菌(Staphylococcus lugdunensis)源的SlugCas9-HF融合表达,通过PCR将操纵序列LacO与dsDNA供体嵌合,构建了新型的CRISPR/Cas9-hLacI供体适配系统(donor adapting system,DAS)。首先在报告载体水平上对Cas9核酸酶活性、DAS介导的同源引导修复(homology-directed repair,HDR)效率进行了验证和优化,其次在基因组水平对其介导的基因精确编辑进行了检测,并最终利用CRISPR/SlugCas9-hLacI DAS在HEK293T细胞中实现了VEGFA位点的精确编辑,效率高达30.5%,显著高于野生型。综上所述,本研究开发了新型的CRISPR/Cas9-hLacI供体适配基因编辑系统,丰富了CRISPR/Cas9基因编辑技术种类,为以后的基因编辑及分子设计育种研究提供了新的工具。

    Abstract:

    During the gene editing process mediated by CRISPR/Cas9, precise genome editing and gene knock-in can be achieved by the homologous recombination of double-stranded DNA (dsDNA) donor template. However, the low-efficiency of homologous recombination in eukaryotic cells hampers the development and application of this gene editing strategy. Here, we developed a novel CRISPR/Cas9-hLacI donor adapting system (DAS) to enhance the dsDNA-templated gene editing, taking the advantage of the specific binding of the LacI repressor protein and the LacO operator sequence derived for the Escherichia coli lactose operon. The codon-humanized LacI gene was fused as an adaptor to the Streptococcus pyogenes Cas9 (SpCas9) and Staphylococcus lugdunensis Cas9 (SlugCas9-HF) genes, and the LacO operator sequence was used as the aptamer and linked to the dsDNA donor template by PCR. The Cas9 nuclease activity after the fusion and the homology-directed repair (HDR) efficiency of the LacO-linked dsDNA template were firstly examined using surrogate reporter assays with the corresponding reporter vectors. The CRISPR/Cas9-hLacI DASs mediated genome precise editing were further checked, and we achieved a high efficiency up to 30.5% of precise editing at the VEGFA locus in HEK293T cells by using the CRISPR/SlugCas9-hLacI DAS. In summary, we developed a novel CRISPR/Cas9-hLacI DAS for dsDNA-templated gene editing, which enriches the CRISPR/Cas9-derived gene editing techniques and provides a novel tool for animal molecular design breeding researches.

    参考文献
    [1] YANG H, REN SL, YU SY, PAN HF, LI TD, GE SX, ZHANG J, XIA NS. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks[J]. International Journal of Molecular Sciences, 2020, 21(18):6461.
    [2] CHANG HHY, PANNUNZIO NR, ADACHI N, LIEBER MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nature Reviews Molecular Cell Biology, 2017, 18(8):495-506.
    [3] TIEN V, DUONG D, JIHAE K, WOO SY, MIL T, JONG SY, SWATI D, JAEYEAN K. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining (MMEJ)[J]. Plant Biotechnology Journal, 2020, 19(2):230-239.
    [4] FU YW, DAI XY, WANG WT, YANG ZX, ZHAO JJ, ZHANG JP, WEN W, ZHANG F, OBERG KC, ZHANG L, CHENG T, ZHANG XB. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing[J]. Nucleic Acids Research, 2021, 49(2):969-985.
    [5] ZHANG XY, LI T, OU JP, HUANG JJ, LIANG PP. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing[J]. Protein & Cell, 2022, 13(5):316-335.
    [6] RIESENBERG S, MARICIC T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells[J]. Nature Communications, 2018, 9(1):1-9.
    [7] NAMBIAR TS, BILLON P, DIEDENHOFEN G, HAYWARD SB, TAGLIALATELA A, CAI KH, HUANG JW, LEUZZI G, CUELLA-MARTIN R, PALACIOS A, GUPTA A, EGLI D, CICCIA A. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant[J]. Nature Communications, 2019, 10:3395.
    [8] CHARPENTIER M, KHEDHER AHY, MENORET S, BRION A, LAMRIBET K, DARDILLAC E, BOIX C, PERROUAULT L, TESSON L, GENY S, de CIAN A, ITIER JM, ANEGON I, LOPEZ B, GIOVANNANGELI C, CONCORDET JP. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair[J]. Nature Communications, 2018, 9:1133.
    [9] SHAO SM, REN CH, LIU ZT, BAI YC, CHEN ZL, WEI ZH, WANG X, ZHANG ZY, XU K. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52[J]. The International Journal of Biochemistry & Cell Biology, 2017, 92:43-52.
    [10] PINDER J, SALSMAN J, DELLAIRE G. Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing[J]. Nucleic Acids Research, 2015, 43(19):9379-9392.
    [11] WIENERT B, NGUYEN DN, GUENTHER A, FENG SJ, LOCKE MN, WYMAN SK, SHIN J, KAZANE KR, GREGORY GL, CARTER MAM, WRIGHT F, CONKLIN BR, MARSON A, RICHARDSON CD, CORN JE. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair[J]. Nature Communications, 2020, 11:2109.
    [12] MA M, ZHUANG FF, HU XB, WANG BL, WEN XZ, JI JF, XI JJ. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system[J]. Cell Research, 2017, 27(4):578-581.
    [13] SAVIC N, RINGNALDA FC, LINDSAY H, BERK C, BARGSTEN K, LI YZ, NERI D, ROBINSON MD, CIAUDO C, HALL J, JINEK M, SCHWANK G. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair[J]. eLife, 2018, 7:33761.
    [14] GU B, POSFAI E, ROSSANT J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos[J]. Nature Biotechnology, 2018, 36(7):632-637.
    [15] AIRD EJ, LOVENDAHL KN, ST MARTIN A, HARRIS RS, GORDON WR. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template[J]. Communications Biology, 2018, 1:54.
    [16] LEE K, MACKLEY VA, RAO A, CHONG AT, DEWITT MA, CORN JE, MURTHY N. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering[J]. eLife, 2017, 6:25312.
    [17] 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8):708-719. ZHANG XJ, XU K, SHEN JC, MU L, QIAN HR, CUI JY, MA BX, CHEN ZL, ZHANG ZY, WEI ZH. A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair[J]. Hereditas (Beijing), 2022, 44(8):708-719(in Chinese).
    [18] XU K, REN CH, LIU ZT, ZHANG T, ZHANG TT, LI D, WANG L, YAN Q, GUO LJ, SHEN JC, ZHANG ZZ. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus[J]. Cellular adn Molecular Life Sciences, 2015, 72(2):383-99.
    [19] YAN NN, SUN YS, FANG YY, DENG JR, MU L, XU K, MYMRYK JS, ZHANG ZY. A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells[J]. Molecular Therapy-Nucleic Acids, 2020, 19:775-789.
    [20] TAKESHI M, DOUGAN STEPHANIE K, TRUTTMANN MATTHIAS C, BILATE ANGELINA M, INGRAM JESSICA R, PLOEGH HIDDE L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nature Biotechnology, 2015, 33(5):538-42.
    [21] ORTHWEIN A, NOORDERMEER SM, WILSON MD, LANDRY S, ENCHEV RI, SHERKER A, MUNRO M, PINDER J, SALSMAN J, DELLAIRE G, XIA B, PETER M, DUROCHER D. A mechanism for the suppression of homologous recombination in G1 cells[J]. Nature, 2015, 528(7582):422-426.
    [22] RICHARDSON CD, KAZANE KR, FENG SJ, ZELIN E, BRAY NL, SCHÄFER AJ, FLOOR SN, CORN JE. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway[J]. Nature Genetics, 2018, 50(8):1132-1139.
    [23] BANAN M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells[J]. Journal of Biotechnology, 2020, 308:1-9.
    [24] HU ZY, ZHANG CD, WANG S, GAO SQ, WEI JJ, LI MM, HOU LH, MAO HL, WEI YY, QI T, LIU HM, LIU D, LAN F, LU DR, WANG HY, LI JX, WANG YM. Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity[J]. Nucleic Acids Research, 2021, 49(7):4008-4019.
    [25] REN CH, XU K, SEGAL DJ, ZHANG ZY. Strategies for the enrichment and selection of genetically modified cells[J]. Trends in Biotechnology, 2019, 37(1):56-71.
    [26] LI GL, WANG HQ, ZHANG XW, WU ZF, YANG HQ. A Cas9-transcription factor fusion protein enhances homology-directed repair efficiency[J]. Journal of Biological Chemistry, 2021, 296:100525.
    [27] TAK LEUNG RW, JIANG XS, CHU KH, QIN J. ENPD-a database of eukaryotic nucleic acid binding proteins:linking gene regulations to proteins[J]. Nucleic Acids Research, 2019, 47(D1):D322-D329.
    [28] MA SF, WANG XL, HU YF, LV J, LIU CF, LIAO KT, GUO XH, WANG D, LIN Y, RONG ZL. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain[J]. Nucleic Acids Research, 2020, 48(18):10590-10601.
    [29] GAUDELLI NM, KOMOR AC, REES HA, PACKER MS, BADRAN AH, BRYSON DI, LIU DR. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.
    [30] ANZALONE AV, RANDOLPH PB, DAVIS JR, SOUSA AA, KOBLAN LW, LEVY JM, CHEN PJ, WILSON C, NEWBY GA, RAGURAM A, LIU DR. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157.
    [31] JIANG TT, ZHANG XO, WENG ZP, XUE W. Deletion and replacement of long genomic sequences using prime editing[J]. Nature Biotechnology, 2022, 40(2):227-234.
    [32] CHOI J, CHEN W, SUITER CC, LEE C, CHARDON FM, YANG W, LEITH A, DAZA RM, MARTIN B, SHENDURE J. Precise genomic deletions using paired prime editing[J]. Nature Biotechnology, 2022, 40(2):218-226.
    [33] CARLSON-STEVERMER J, ABDEEN AA, KOHLENBERG L, GOEDLAND M, MOLUGU K, LOU M, SAHA K. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing[J]. Nature Communications, 2017, 8:1711.
    [34] ALI Z, SHAMI A, SEDEEK K, KAMEL R, ALHABSI A, TEHSEEN M, HASSAN N, BUTT H, KABABJI A, HAMDAN SM, MAHFOUZ MM. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice[J]. Communications Biology, 2020, 3:44.
    [35] NAKATA E, LIEW FF, UWATOKO C, KIYONAKA S, MORI YS, KATSUDA Y, ENDO M, SUGIYAMA H, MORII T. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures[J]. Angewandte Chemie International Edition, 2012, 51(10):2421-2424.
    [36] STEPHANOPOULOS N. Hybrid nanostructures from the self-assembly of proteins and DNA[J]. Chem, 2020, 6(2):364-405.
    [37] SAMARASINGHE KTG, AN E, GENUTH MA, CHU L, HOLLEY SA, CREWS CM. OligoTRAFTACs:a generalizable method for transcription factor degradation[J]. RSC Chemical Biology, 2022, 3(9):1144-1153.
    [38] ZELLER KI, ZHAO XD, LEE CWH, CHIU KP, YAO F, YUSTEIN JT, OOI HS, ORLOV YL, SHAHAB A, YONG HC, FU YT, WENG ZP, KUZNETSOV VA, SUNG WK, RUAN YJ, DANG CV, WEI CL. Global mapping of c-Myc binding sites and target gene networks in human B cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47):17834-17839.
    [39] MOU Y, YU JY, WANNIER TM, GUO CL, MAYO SL. Computational design of co-assembling protein-DNA nanowires[J]. Nature, 2015, 525(7568):230-233.
    [40] KURAS L, CHEREST H, SURDIN-KERJAN Y, THOMAS D. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism[J]. The EMBO Journal, 1996, 15(10):2519-2529..
    [41] LIU Q, SONG LL, PENG QQ, ZHU QY, SHI XN, XU MQ, WANG QY, ZHANG YX, CAI MH. A programmable high-expression yeast platform responsive to user-defined signals[J]. Science Advances, 2022, 8(6):eabl5166.
    [42] MARKLUND E, MAO GZ, YUAN JW, ZIKRIN S, ABDURAKHMANOV E, DEINDL S, ELF J. Sequence specificity in DNA binding is mainly governed by association[J]. Science, 2022, 375(6579):442-445.
    [43] GONG XY, ZHANG RH, WANG J, YAN YJ. Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference[J]. ACS Synthetic Biology, 2022, 11(6):2175-2183.
    [44] MASO L, VASCON F, CHINELLATO M, GOORMAGHTIGH F, BELLIO P, CAMPAGNARO E, van MELDEREN L, RUZZENE M, PARDON E, ANGELINI A, CELENZA G, STEYAERT J, TONDI D, CENDRON L. Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway[J]. Structure, 2022, 30(11):1479-1493.e9.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马宝霞,崔婕妤,钱泓润,张潇筠,杨森,张骐镜,韩艺帆,张智英,王建刚,徐坤. 一种新型的CRISPR/Cas9-hLacI双链DNA供体适配基因编辑系统[J]. 生物工程学报, 2023, 39(10): 4204-4218

复制
分享
文章指标
  • 点击次数:408
  • 下载次数: 1260
  • HTML阅读次数: 719
  • 引用次数: 0
历史
  • 收稿日期:2022-11-29
  • 录用日期:2023-04-24
  • 在线发布日期: 2023-10-17
  • 出版日期: 2023-10-25
文章二维码
您是第6074263位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司